

1

CS447-Network and Data Communication

Project Specification/Project #1, Spring 2024

Due 9:30 a.m. on February 20, 2024

1. Introduction

In this project, we will design and implement “multi-threaded application-layer proxy firewall” using the

Windows standard socket interface (“Winsock”). The proxy firewall is an intermediate server (A.K.A, “proxy”),

which works as a middleman between clients and a server as shown in Fig. 1 below. The example in the figure

shows an application-layer security firewall for a web server, but such a security firewall can be used virtually for

any client-server based network applications. In the figure, the proxy behaves as if it were the real web server to

clients. The client first transmits a HTTP GET request (as a text message) to the proxy, requesting a target web

page. Then, the proxy scans the contents in the GET command, looking for any possibility hazardous contents to

be removed before such hazardous contents reach the real web server. The security firewall also monitors any

hazardous contents to prevent any secure information from leaking to the outside of the web server.

Web ServerProxy
Client

(Web Browser)

HTTP GET HTTP GET

HTTP RESPONSE HTTP RESPONSE

web page
files

Fig. 1 – Concept of an application-layer security firewall as a proxy

2. Requirements

The security firewall we design and implement for this project should satisfy the following requirements:

(a) The security firewall accepts HTTP requests from the existing commercial web browsers (Edge, Chrome,

FireFox, Opera, and etc.) at port 9080 as a proxy.

(b) The IP address (and the port number) of a real web server can be hard coded in the proxy (should be defined

as a constant using #define pre-compiler directive).

(c) The security firewall should establish a TCP connection with a client for each HTTP GET request session as

a proxy (web browsers try to establish a TCP connection with a web server for each HTTP GET request

session).

(d) After the proxy accepts a HTTP GET request from a client, and if there is no hazardous contents in the

HTTP GET, it establishes a TCP/IP connection to a real web server at a remote server, which should be

listening to port 80 (note: this project assumes port “7080” to avoid possible conflicts to other background

network processes). If any hazardous contents are detected, the proxy should respond to the requesting client

by “HTTP 401: Unauthorized Access” and the proxy should drop the TCP connection.

2

(e) When the remote web server responds, first, the proxy should receive the response, and scan the contents in

the server’s response, looking for any hazardous contents in the response. If any hazardous contents are

detected, the proxy should immediately drop the TCP connection with the client and the web server.

(f) Most of the commercial web browsers generate multiple HTTP requests in parallel. Thus, your proxy should

be able to handle such concurrent multiple HTTP requests to a remote web server (and the responses from

the remote web server should be correctly processed). This feature requires that multiple threads should be

used for handling HTTP GET and HTTP responses after the initial HTTP GET (for “index.html”).

(g) No data should be dropped at the proxy for authorized requests and responses (those that do not contain any

hazardous contents).

(h) The proxy should work with any existing commercial web browsers and web servers.

(i) All the responses to a client’s HTTP request must come from a web server (i.e., the proxy can’t synthesize

any web contents).

(j) The proxy should be implemented for MS Windows platform using C++ (Visual C++ and W32

environment).

(k) Two hazardous contents should be declared for each direction (client to server and server to client). Each of

hazardous contents should be declared as a char string. For example, the first hazardous contents in the

messages from a client to server should be declared as “char hazardous_contents_CS_01[256];”. The four

hazardous contents should be declared at the beginning of “main” in your C++ source code file.

3

3. Required Proxy Organization

The following figure (Fig. 2) shows the required proxy structure.

CLIENT

(Browser)

socket

socket

accept

C1

C2

recv

C2

recv

send

C2

send

send end_thread

recv

C3
send

bind connect

Web

Server

Proxy

recv close C3
close C2

end_thread

accept socket
spawn two

threads

CS

SC

listen

C3

HTTP GET

HTTP Response

HTTP GET HTTP Response

connect

any port

port 9080

any port

port 80

Fig. 2 – Required proxy organization

4. Expectations when a question is asked:

Dr. Fujinoki is willing to assist you for your successful completion of this project and if you have any

conceptual and/or technical issues, you are encouraged to ask your questions to Dr. Fujinoki. However, to

maximize your learning, each of you is expected to do the following (i.e., Dr. Fujinoki will welcome you

when you are asking questions, if you do the followings):

(1) Identify where (in your source code) the problem exists

(2) Describe the symptom(s) of the problem

(3) Describe how the problem happens (always happen, sometime happen, the condition(s) for the problem

to happen, etc.)

(4) Describe what you tried (to understand and/or solve the problem)

(5) Stop by Dr. Fujinoki’s office.

4

(6) Bring your source code (either hard copy or soft copy)

(7) Any new questions within 48 hours before the submission deadline will not be answered.

(8) If you have a questions about this project, please have an appointment. Questions about this project will

not be answered through emails or zoom meetings (except for non-technical questions).

5. Grading Criteria (as a guideline):

If your web proxy is capable of:

(1) Handling a web page that does not contain any other files using “a single-thread web proxy design”):

20/100

(2) Handling a web page that contains more than one file download, using “a single-thread web proxy

design”), but not all content files are successfully transferred (some multiple files are successfully

transferred): 30/100

(3) Handling a web page that contains more than one file download, using “a multi-thread web proxy

design”), but not all content files are successfully transferred (some multiple files are successfully

transferred): 50/100

(4) Handling a web page that contains more than one file download, using “a multi-thread web proxy

design”), and all content files are successfully transferred: 90/100

(5) Successfully performing “fire wall features” on top of (4) above: 100/100

(6) The exams cover this project (i.e., some questions about this project will be asked in the exam(s)). For

seriously low performance (e.g., less than 50%) for the questions about this project in the midterm exam

can result in some “discount” to your project grade.

 Serious violations of the course academic dishonesty policies will result in a failing grade.

 Any conduct of academic dishonesty will be reported to the department of computer science and to

the dean’s office.

6. Submissions

Please e-mail your cpp file (only one *.cpp file) to the TA (amshres@siue.edu) for the earliest possible

deadline below (it is suggested that you “cc” to Dr. Fujinoki (hfujino@siue.edu):

 Submission deadline: 9:59:59 a.m. on February 20th (Tuesday) as timestamped at the SIUE mail server.

 If multiple submissions are made from the same person, only the last submission will be graded.

 Late submissions will be accepted within 24 hours after the submission due, with -10 points up to each12

hour.

5

7. Rules to avoid academic dishonesty

(a) Sharing source code file(s) is considered academic dishonesty

(b) Exchanging ideas through oral communications is not allowed (this project is completely an individual

project).

(c) Regarding samples you find anywhere except in the references (the ones Dr. Fujinoki introduced in the

first programming assignment), only “syntax-level reference” (which should not be more than three C++

statements) is acceptable. For any case that exceeds three statements, please consult to Dr. Fujinoki

instead of making your own assumptions.

Note: If you have anything you are not sure, please do not make your own assumptions. If you are

making your own assumptions for anything you are not sure, please be responsible for your own

assumptions (Dr. Fujinoki will not be responsible for your assumptions). Remember: asking a question

is free (no matter what is your question) and once you got an answer from Dr. Fujinoki, Dr. Fujinoki

will be responsible for whatever answer he gave to you.

8. Other issues

 For those who have technical problems to finish this project, please consult to Dr. Fujinoki as soon as

possible.

__
CS447 – Networks and Data Communications, Description of Project #1, Spring 2024

