CS314 Operating System
Spring 2024
Exercise Questions on February 6th (PART 1)

EXERCISE #1

Suppose that a processor (single-core processor) is executing the following two instructions in
the two processes. If the initial value of variable ‘A’ is 100 at the beginning (before this
processor executes any of the two statements), what are the possible values in ‘A’ after this
processor executes the two statements (once for each)? Show all the possible values in ‘A’.

Qared Memory

Pro gess \ PI’OCGSS

m=Awg) (Py

N \

~
Processor

LOAD R3, (A)
ADD R3,R3, -3
STORE (A), R3

LOAD R, (A)
ADD RL,RL 8
STORE (A), R1

EXERCISE #2

An implementation of a circular FIFO queue for multiple producers and consumers are attached
in the appendix (it is the one we designed in our lecture). Regarding the implementation:

Question #1: Is it necessary to have “wait (mutex)” and “signal(mutex)” in the producer
processes? If NO, explain why not. If YES, explain why we need them.

Question #2: Is there any merit in using two different “mutex semaphore” (one for the producers
and the other for the consumers)? If yes, describe what is the merit? If not, why

not?

Question #3: Is the implementation “starvation free” for both producers and consumers? If NO,
explain why it is not. If YES, explain why we it is.

APPENDIX:

#define N 100 // the queue size

shared memory int CFQ [N]; // the circular FIFO gueue
shared memory jnt TOP =0; // pointer to the top of the queue
shared memory int TAIL=0; // pointer to the tail of the queue

semaphore mutex = 1; // a mutex semaphore
semaphore empty = N; /{ a counting semaphore
semaphore full = 0; // a counting semaphore

void producer (void) void consumer (void)
{ {
int new _item; /I place holder for a new item to insert intnew_item; /1 place holder for a new item to insert
while [TRUE) while (TRUE)
i
{ itemn = d it . ¢ it wait (fill); // make sure the gqueue has at least one slot
new item = produce new_item(); // generate a new item wait (mutex); /1 should be the only one
Wmit (empty); /{ make sure the queue is NOT full new item = remove(CFQ, TOP); // remove one item from the queue
wait (mutex); //1should be the only one TOP = (TOP +1) % N; // update the Top pointer
insert(CFQ, TAIL, new_item); // insert the new item to the queue signal(mutex); /{1 am done!
TAIL= (TAIL+1)% N; //update the Top pointer
signal{empty); /1 (empty) = (empty) +1
signal{mutex); //1am done!
signal(full); [f [full) =(full) + 1 use_the new_item(new_item; // use the new item
1 1
} i

CS314 Operating Systems, Spring 2024, Exercise Questions, February 6 (PART 1), 2024

