
CS314 Operating Systems

Spring 2024
Exercise Questions on February 20th, 2024 (PART I)

EXERCISE #1

“Dining Philosopher Problem” is one of the classic IPC problems for CS majors to learn IPC

using semaphores, as well as the concepts of process starvations and process deadlocks.

In “Dining Philosopher Problem”, there are N processes on a dining table (as shown in the figure

below), each of which represents “a (dining) philosopher”. Each dining philosopher repeats the

following activities: thinking and eating (dining). For a philosopher to start dining, he (or she)

needs two forks (his left and right forks). Note that philosophers share forks.

The Dining Philosophers

 There are N (N = 5) philosophers on a dining table

 Each philosopher has his/her own dish

 Each philosopher needs two forks (left and right)

A model for inter-process-communications (IPC)

The following is a solution (“SOLUTION #1”) for “the dining philosopher problem”.

#define N 5 // the number of dining philosophers on a table
semaphore fork[N]; // each fork is represented by a semaphore (a bad design)

void philosopher(int i)
{

while (TRUE)
{

think(); // a philosopher thinks
wait(fork[i]); // grab the left fork
wait(fork[(i+1) % N]); // grab the right fork

eat(); // start eating

signal(fork[i]); // release the left fork
signal(fork[(i+1) % N]); // release the right fork

}
}

Q1: Is process deadlock possible?

Q2: If yes, how? If no, why not?

Q4: If yes, how? If no, why not?

Q3: Is process starvation possible?

SOLUTION #1

 Questions: Regarding the solution answer the following questions:

Q1: Is process starvation possible?

Q2: If yes, show how process starvations can happen. If no, explain how process

starvations will not happen.

Q3: Is process deadlock possible?

Q4: If yes, show how process deadlock can happen. If no, explain how process

deadlocks will not happen.

EXERCISE #2

The following is another solution (“SOLUTION #2”) for “the dining philosopher problem”.

SOLUTION #2

void philosopher(int i)
{

while (TRUE)
{

think(); // a philosopher thinks
take_fork(i); // grab the two forks
eat(); // start eating
put_forks(i); // release the forks

}
}

void take_forks(int i)
{

wait(MUTEX);
state[i] = HUNGRY; // I’m hungry
test(i); // try to get the forks
signal(MUTEX);

wait(philosopher[i]); // I am eating now
}

}

void put_forks(int i)
{

wait(MUTEX);

state[i] = THINKING; // I don’t need forks
test(LEFT); // my left waiting for me?
test(RIGJT); // my right waiting for me?

signal(MUTEX);
}

void test(int i)
{
if ((state[i] = HUNGRY) & (state[LEFT] != EATING)

& (state[RIGHT] != EATING))
{

state[i] = EATING; // I start eating
signal (philosopher[i]);

}
}

Assume:

 N = 5

 semaphore philosopher [N]; // binary semaphore for each dining philosopher

 semaphore MUTEX; // binary semaphore for mutex

 Each philosopher semaphore = 0; // each set to ‘0’

 The mutex semaphore = 1; // set to ‘1’

Questions: Regarding the solution answer the following questions:

Q1: Is process starvation possible?

Q2: If yes, show how process starvations can happen. If no, explain how process

starvations will not happen.

Q3: Is process deadlock possible?

Q4: If yes, show how process deadlock can happen. If no, explain how process

deadlocks will not happen.

CS314 Operating Systems, Spring 2020, Exercise Questions, February 20, 2024 (PART I)

