
 1

CS 314-001 Operating Systems, Spring 2024

Quiz #5 on February 8, 2024

List of the Possible Questions

#1: What does “atomic” in “atomic operations” mean?

#2: What is “a binary (or mutex) semaphore”?

#3: What are the two primary system calls for manipulating a semaphore?

#4: Explain how a semaphore can prevent race condition.

#5: What are the two operations of a semaphore (just name them)?

#6: What “wait” system call to a semaphore exactly performs?

#7: What “signal” system call to a semaphore exactly performs?

#8: Why must the two system calls for semaphores (“wait” and “signal”) be atomic operations

(explain the reason)?

#9: What are “counting semaphores” (how are “counting semaphores” different from “binary

(mutex) semaphores”?

#10: Who manages semaphores?

#11: Operating systems use “queue (FIFO data structure)” for managing processes blocked on a

semaphore. Why is FIFO-queue used (the best reason for using FIFO structure)?

#12: What is “process deadlock”? How is it different from “process starvation”?

#13: If more than one mutex (binary) semaphore is used, can process deadlock occur? If no,

explain why not. If yes, explain how using an example.

#14: Why is it difficult to eliminate the condition of “hold & wait” (by applying “request all

after you drop what all what you currently hold” method) to prevent a process deadlock
from occurring?

#15: Why is it difficult to eliminate the condition of “mutual exclusion” to prevent a process

deadlock from occurring?

#16: Why is it difficult to eliminate the condition of “non preemptive resources” to prevent a

process deadlock from occurring?

 2

#17: Why is it difficult to eliminate the condition of “hold & wait” (by applying “request all
after you drop what all what you currently hold” method) to prevent a process deadlock
from occurring?

#18: Which of the following sentence is the correct definition of “safe state” in deadlock

avoidance (select the best option)?

(a) From the current state, deadlock can happen, if some process(es) can not finish.
(b) From the current state, there is at least one particular way that lets all the processes

complete without causing a deadlock.
(c) The deadlock has already happened.
(d) If deadlock has not happened yet that is a safe state.
(e) None of the above

#19: Why is it difficult to eliminate the condition of “circular wait” (by applying “assign

resource IDS and require all processes to make requests in the ascending or the descending
order” method) to prevent a process deadlock from occurring?

#20: What are the two states in “deadlock avoidance”?

#21: In deadlock prevention, one of the solutions is not to allow any process to “hold & wait” (if

a process that holds some non-preemptive resources needs additional resource(s), the
process must release all the resources it currently holds and then it requests all the
resources (both what it has released and what it additionally needs). Explain how this
will prevent deadlocks.

#22: In the classroom, we discussed what we can do to make sure one of the four necessary

conditions for a deadlock is not satisfied. Is it possible to have a technique that never
causes “circular wait” (other than “all or nothing approach”)? If yes, describe how.

#23: For the following situations, which one is (are) in deadlock?

In the above figures, Ri = Resource, Pi = Process, a directional edge from R to P is
assignment and a directional edge from P to R is a blocked request (one edge for one
resource). You don’t need to describe anything. If none of the three is in deadlock,
clearly mention so. If the same resource is assigned to more than one process, it means that
more than one instance of the resource are available.

CS314 Operating System, Spring 2023 – List of the possible questions for Quiz #5 (February 8, 2024)

P1 P2

P3

P4

R1

R2

R4

R3
R5

Case 1

P1P1 P2P2

P3P3

P4P4

R1R1

R2R2

R4R4

R3R3
R5R5

Case 1Case 1

P1 P2

P3

P4

R1

R2

R4

R3
R5

Case 2

P1P1 P2P2

P3P3

P4P4

R1R1

R2R2

R4R4

R3R3
R5R5

Case 2Case 2

P1 P2

P3

P4

R1

R2

R4

R3
R5

Case 3

P1P1 P2P2

P3P3

P4P4

R1R1

R2R2

R4R4

R3R3
R5R5

Case 3Case 3

