
CS314-001 Operating Systems

Programming Project #2 Description, Spring 2024

Project Due: 9:30 a.m. on April 16, 2024

I. Objectives

This is the final programming project in this course. The objective in this programming project

is to have practical experience for thread programming in UNIX operating systems, using

"pthread". Pthread is a UNIX user-mode thread library and it is one of the most popular thread

implementations for UNIX platforms. In this project, we control the execution timings of five

threads using an interrupt handler. The interrupt handler manages (schedules) threads using

“thread schedule vector”, which is an array of integers to determine the pattern of thread

executions. As we already discussed, user-mode threads are not preemptive by an operating

systems. Because of the limitation, it is necessary for us to use semaphore(s) and a thread

controlling mechanisms that are designed specifically for user-mode threads (i.e., “pthread

mutex(es)” and “pthread conditional variable(s)”).

II. Requirements

(1) Each submission should meet both “the output requirements (see the appendix for the

required outputs)” and “the program structure requirements”.

(2) Figure 1 shows the required program structure for Project #2.

Parent Thread

create pthread

condition variable(s)

create pthread

mutex semaphore(s)

perform all

initializations*1

create a child thread

(one at a time)

set up the

interrupt handler

freeze itself

(parent stops) *2

Child Thread 0 Child Thread 1 Child Thread 2 Child Thread 3 Child Thread 4

wait until it is woken up

by the interrupt handler

display “thread 0 started”

display “Thread: 0

is running ...”

repeat until the interrupt

handler wakes up

the interrupt

handler wakes up

wait until it is woken up

by the interrupt handler

display “thread 1 started”

display “Thread: 1

is running ...”

repeat until the interrupt

handler wakes up

the interrupt

handler wakes up

wait until it is woken up

by the interrupt handler

display “thread 2 started”

display “Thread: 2

is running ...”

repeat until the interrupt

handler wakes up

the interrupt

handler wakes up

wait until it is woken up

by the interrupt handler

display “thread 3 started”

display “Thread: 3

is running ...”

repeat until the interrupt

handler wakes up

the interrupt

handler wakes up

wait until it is woken up

by the interrupt handler

display “thread 4 started”

display “Thread: 4

is running ...”

repeat until the interrupt

handler wakes up

the interrupt

handler wakes up

Interrupt Handler

select the next

thread to run

wake up the next

thread to run

stops the currently-

running child thread

Figure 1 - the required program structure for Project #2

(3) The main (the parent) thread should create five child threads after it is started.

(4) Project #2 requires the following structure (Figure 2) for each child thread primarily for

testing purposes by the TA, which also posted to the course home.

Figure 2 – the required structure for each child thread

(5) Figure 3 shows a sample of the child thread schedule vector (presented in the next page)

required in each submitted source code file. The child thread schedule vector is implemented

as an array of integers, where the first array element (i.e., “schedule_vector[0]”) holds the ID of

a child thread (0, 1, 2, 3, or 4) that should be executed first. Similarly, the second array

element (i.e., “schedule_vector[1]”) holds the ID of a child thread (0, 1, 2, 3, or 4) that should

be executed second, and so on. The sample child thread schedule vector shown in Figure 3 will

execute the five child threads in the order of thread #4, #3, #2, #1, and #0 (in the descending

order of the child thread ID’s). The followings are the requirements about the child thread

schedule vector:

(a) As presented in “p3_sample.c”, the child thread schedule vector should be declared at the

beginning of each submitted source code file as a global variable. Any submission

without (or any submission that does not properly implement) the child thread schedule

vector will not be graded.

(b) The child thread schedule vector should be initialized by the parent thread before the

parent thread starts creating five child threads.

(c) Each submitted source code file will be tested by the TA after the TA changes the contents

in the child thread schedule vector. Multiple different child thread scheduling patterns will

be tested.

(d) Each element in the child thread schedule vector can take any thread IDs (0 through 4).

For example, the TA will test some cases where a child thread ID appears more than once

in the child thread schedule vector.

(e) The TA will NOT apply any thread IDs other than 0, 1, 2, 3, and 4.

Figure 3 – a sample of the child thread schedule vector

(6) Other requirements

(a) No spin-wait by the parent thread, all five child threads, and the interrupt handler.

(b) The interrupt interval should be declared by a label, “#define SCHEDULE_INTERVAL”,

which specifies the interrupt interval in second (e.g., “#define SCHEDULE_INTERVAL 1”

means that the interrupt handler will be activated once in each second).

(c) The outputs from all threads (including those from the interrupt handler) should follow the

sample outputs posted to the course home. No output should be made except by the required

outputs (i.e., the required printf in the required structure). Any deviation from this

requirement may be considered as cheating.

(d) Once a child thread is scheduled by the interrupt handler, no other child thread(s) should run

(until the interrupt handler switches to another child thread).

(e) When the interrupt handler wakes up, it should display:

“I woke up on the timer interrupt (%d)”, where ‘d’ represents how many times the interrupt

handler was activated so far (since the beginning of the program run). Please see the sample

outputs posted to the course home.

(f) The interrupt handler is the only subject that can wake up child threads. None of the five

child threads should wake up (i.e., start running) other child thread(s). Figure 4 shows the

required structure of the interrupt handler.

Figure 4 - the required interrupt handler structure

(g) You can add (use) your own global variable(s). You can use as many pthread condition

variables as you like.

III. Testing by the TA

The TA will test each submission by changing the following parameters:

(a) The interrupt interval “SCHEDULE_INTERVAL”

(b) The child thread schedule vector

(c) The child thread display slow-down factor (“SLOWDOWN_FACTOR”). In the sample, it

is currently set to 6,000,000, but it can be changed (slowdown more or slightly make it less).

(d) The number of the child thread will NOT be changed. Thus, it is OK for you to “hard code”

the number of the child threads in your source code.

IV. Required Submission

Program source code file (named as “p3_nnn.c” where ‘nnn’ represents the last three digits of

your SIUE 800- ID number (some of you are expected to specify four digits, instead of three))

should be submitted to Moodle by the deadlines.

(a) Final submission deadline: 9:30 a.m., on April 16th (Tuesday)

(b) Late submissions within 48 hours past the final submission due: -10% for each 12 hours

after the final submission deadline.

(c) Late submissions over 48 hours past the final submission due: will not be accepted

V. Other Requirements

 To be posted, if any.

APPENDIX (the required outputs):

(a) Right after the program is started:

(b) While the program (the five child threads and the interrupt handler) is in progress:

__
CS314 Operating Systems, Spring 2024, Project #2 Specifications (as of 1:39 p.m., March 14, 2024)

