The following is a list of possible questions for our quiz on October 23rd. Some of the questions will not be asked in the quiz. All the questions that will appear in the quiz will appear exactly as shown below (however, numeric parameters may be changed). The quiz is closed textbook, closed notes and closed neighbors. Note that the questions, which did not appear in this quiz, still may appear in the exams. You will find a solution for these questions during lectures.

#1: What are “static code optimizations”?

#2: What are “dynamic code optimizations”?

#3: Which pipeline hazards is “delayed branches” effective for?

#4: What are the major advantages in “dynamic code optimizations”?

#5: What are the major disadvantages in “dynamic code optimizations”?

#6: How does “forwarding” work? Is the code optimization considered “a static code optimization” or “a dynamic code optimization” (attach your brief justification for the choice you are making for this question)?

#7: What are the major disadvantages (mention at least two) of forwarding?

 Hint: Forwarding is a dynamic code option technique. Therefore, the disadvantages of forwarding are same as those for dynamic code optimizations.

#8: What is the major advantage of forwarding?

 Hint: Forwarding is a dynamic code option technique. Therefore, the advantages of forwarding are same as those for dynamic code optimizations.

#9: How does “instruction scheduling (code optimizations) by a compiler” is performed?

#10: What is the major advantage of “instruction scheduling (code optimizations) by a compiler”?

 Hint: Instruction scheduling by a compiler is a static code option technique. Therefore, the advantage of instruction scheduling by a compiler is same as that for static code optimizations.
#11: What is the major disadvantage of “instruction scheduling (code optimizations) by a compiler”?

Hint: Instruction scheduling by a compiler is a static code option technique. Therefore, the disadvantage of instruction scheduling by a compiler is same as that for static code optimizations.

#12: How does “delayed branch” works? Is the code optimization considered “a static code optimization” or “a dynamic code optimization” (attach your brief justification for the choice you are making for this question)?

#13: What is the major advantage of “delayed branch”?

Hint: This question is covered by a one of the PPT slides.

#14: What is the major disadvantage of “delayed branch”?

Hint: This question is covered by a one of the PPT slides.

*** the following questions are about “memory subsystems ***

#15: What is the major issue about “memory subsystem”?

#16: What is “memory hierarchy”?

#17: Why was “memory hierarchy” invented?

#18: What is “external (memory) fragmentation”?

#19: Why is “external (memory) fragmentation” a big problem for computer systems?

#20: What is “memory compaction”?

#21: Why isn’t “memory compaction” an effective solution to deal with external fragmentation?

#22: What is “memory paging”?

#23: What is “virtual memory”?

#24: Why is “virtual memory” an effective solution to eliminate “external fragmentation”?

CS 286 – Computer Organization & Architecture, Quiz #8, Question List