The N^2-matrix multiplication is one of the most mathematical operations, being used for many applications in our society, such as Fourier transform (image processing, analyzing sound data, and etc.). The N^2-matrix multiplication is defined as visualized below:

$$
\begin{bmatrix}
 a_{11} & a_{12} & a_{13} \\
 a_{21} & a_{22} & a_{23} \\
 a_{31} & a_{32} & a_{33}
\end{bmatrix}
\times
\begin{bmatrix}
 b_{11} & b_{12} & b_{13} \\
 b_{21} & b_{22} & b_{23} \\
 b_{31} & b_{32} & b_{33}
\end{bmatrix}
= \begin{bmatrix}
 c_{11} & c_{12} & c_{13} \\
 c_{21} & c_{22} & c_{23} \\
 c_{31} & c_{32} & c_{33}
\end{bmatrix}
$$

N2-matrix multiplication can be executed by a SIMD parallel computer. Regarding executions of N2-matrix multiplications, answer the following questions:

1. Algorithm complexity using a SISD computer:

2. Algorithm complexity using a SIMD computer:

3. The number of parallel processing units (PUs) to achieve the algorithm complexity for (2) above: