The following is a list of possible questions for our quiz on September 17th. Some of the questions will not be asked in the quiz. All the questions that will appear in the quiz will appear exactly as shown below (however, numeric parameters may be changed). The quiz is closed textbook, closed notes and closed neighbors. Note that the questions, which did not appear in this quiz, still may appear in the exams. You will find a solution for these questions during lectures.

Part I – the topics on 9/12:

#1: Show the binary bit pattern for $+262.75_{(10)}$ in IEEE-754 format. Show your work.

#2: Show the binary bit pattern for the tiniest positive number in IEEE-754 floating point numbers.

#3: Show the binary bit pattern for the tiniest negative number in IEEE-754 floating point numbers (for the definition of “the tiniest negative”, use the definition in #7).

#4: Show the binary bit pattern for the largest positive number in IEEE-754 floating point numbers (for the definition of “the tiniest positive”, use the definition in #7).

#5: Show the binary bit pattern for the smallest negative number in IEEE-754 floating point numbers (for the definition of “the smallest negative”, use the definition in #7).

Note: For questions #7 through #9 above, the following figure will be provided in your quiz question sheet:
#6: What are the five different types of the numbers IEEE-754 floating-point numbers that can not be accurately represented by a processor?

Note: This question does not ask descriptions of the five different types of the numbers. Instead, it asks the name of the five different types of the numbers.

Part II – the topics on 9/14 & 9/17:

#7: What are the five basic steps in a processor datapath?

#8: What does “IF” stage in a processor datapath do?

#9: What does “ID” stage in a processor datapath do?

#10: What does “EX” stage in a processor datapath do?

#11: What does “ME” stage in a processor datapath do?

#12: What does “WB” stage in a processor datapath do?

#13: What is “PC (Program Counter)” register for?

#14: What does “CPI” stand for? What does it mean?

#15: What is “processor clock cycle time”?

#16: Show the formula to calculate the execution time using, IC (instruction count), R (clock cycle rate), and one more parameter.

#17: Processors with a lower clock rate execute the same binary programs faster than the processors with a higher clock rate. How is this possible?

#18: For the following performance metrics for processors, show which way each metric is better:

- **Execution time**: short, long
- **Clock rate**: low, high
- **Clock cycle time**: short, long
- **CPI**: small, large
- **MIPS rate**: small, large

#19: What are “scalar datapath processors”?
#20: What are “pipeline datapath processors”?

#21: What are “super-scalar datapath processors”?

#22: What are “super-pipeline datapath processors”?

#23: What are “VLIW datapath processors”?

#24: What are “vector datapath processors”?

#25: What are “structural hazards”? Show an example of the structural hazard (using assembly instructions).

#26: What are “data hazards”? Show an example of the data hazard (using assembly instructions).

#27: What are “control hazards”? Show an example of the control hazard (using assembly instructions).

#28: What are the four different types of data dependency?

#29: Show an example of RAR data dependency.

#30: Show an example of RAW data dependency.

#31: Show an example of WAR data dependency.

#32: Show an example of WAW data dependency.