Computer Architecture

Textbooks for reading:

1. Computer performance metrics
 - Execution time
 - Clock cycle rate
 - Clock cycle time
 - MIPS rate
 - Instruction count
 - Throughput
 - Response time
 - Benchmark programs
 - Amdahl’s Law
 - Moor’s Law

2. Processors

 2.1 Instruction set architectures
 - RISC/CISC designs
 - Various types of instructions
 - Memory addressing modes
 - Performance analysis for the above topics

 2.2 Processor architectures
 - Stack-based architecture processors
 - Register-based architecture processors
 - Accumulator architecture processors
 - Register-Memory architecture processors
 - Register-Register architecture processors
 - Memory-memory architecture processors
 - Performance analysis for the above topics

 2.3 Datapath architectures
 - Scalar, super-scalar, pipeline, super-pipeline architectures
 - VLIW and vector datapath processors
 - Speed-up factor for various datapath architectures
 - Impact of deep pipeline processors
- Different types of pipeline hazards
- Hardware and software solutions for various pipeline hazards
- Dynamic and static solutions for various pipeline hazards
- Different types of data dependency
- Different solutions for different data dependency
- Multi-function unit pipelines
- Dynamic branch prediction and speculative executions
- Score-board dynamic instruction scheduling and out-of-order executions
- Performance analysis for the above topics

3. Memory subsystem

3.1 Memory hierarchy
- Concepts
- Performance analysis for the above topics

3.2 Cache memory
- Average memory access latency
- Write-through and write-back cache policy
- Cache associativity
- Impacts from cache misses
- Solutions for cache misses
- Memory interleaving and memory pipelining
- Performance analysis for the above topics

3.3 Virtual Memory
- Concepts of logical and physical address
- Performance analysis for the above topics
- Paging
- Performance analysis for the above topics

3.4 Segmentation
- Concept of segmentation
- Performance analysis for the above topics

4. Bus

4.1 Basic knowledge of bus
- Concept
- Performance analysis

4.2 Types of wires in bus
- Concept
- Different types of I/O device addressing
- Performance analysis
4.3 Internal and external bus
 • Concept
 • Performance analysis

4.4 Performance metrics in bus
 • Concept
 • Performance analysis

4.5 Bus arbitrations
 • Concept
 • Performance analysis

5. I/O Devices

5.1 Different types of I/O devices

5.2 Methods for I/O device accesses
 • Programmed I/O’s, interrupts, centralized DMA, and cycle-stealing DMA
 • Performance analysis

5.3 Queuing theory
 • Concept
 • Performance analysis

6. Parallel computing

6.1 Different levels of parallel computers
 • Instruction-level parallelism
 • Thread-level parallelism
 • Function-level parallelism
 • Process-level parallelism
 • Computer-level parallelism
 • Performance analysis

6.2 Different models for parallel computing
 • SISD
 • SIMD and vector-multiplication algorithms
 • MISD
 • MIMD
 • Performance analysis

6.3 Cache consistency issues in parallel computers
 • Concept
 • MESI cache consistency protocol
 • Performance analysis
7. Other topics related to the existing processors
 - Intel’s hyper-threading
 - Intel’s micro-operations
 - Performance analysis