Chemistry Learning In Progress
Design Specifications Document

Nathan Mikeska

Neil Alfredson

Richard Carney

Brian Navarro

Table of Contents
1. Introduction
3
1.1 Purpose of the System

3
1.2 Design Goals

3

1.2.1 Dependability Criteria

3

1.2.2 Performance Criteria

3

1.2.3 Maintenance Criteria

4

1.2.4 End-user Criteria

4

1.2.5 Design Criteria

4

1.2.6 Lifecycle

5
1.3 Definitions, acronyms, and abbreviations

6
1.4 Web Page

7
1.5 References

7
2. Proposed System

7
2.1
System Overview

7
2.2 System Decomposition

9
2.3 Hardware/Software Mapping

10
2.4 Persistent Data Management

11
2.5 Access and Control Security

12
2.6 Global Software Control

12
2.7 Boundary Conditions

12

3. User Interface

12
4. Subsystem Interfaces

18
5. Packages and File Organization

19
6. Class Diagram

21
7. Testing

22
8. Glossary

26
1. Introduction

 1.1 Purpose of the System

 The purpose of this system is to provide students with an automated

 version of the current system. Therefore, this educational tool will

 have to retain the same objective of allowing a user to arrange freely a

 given set to form the patterns that make up the final arrangement.

 Each set in one way or another reflects the one of many ways the

 periodic table can be organized.

Furthermore, beyond mimicking the current system, we aim to provide

observational data that shows the choices a user made toward finding a

final arrangement for a set. This recorded data will help illuminate the

various thought processes that occur for the user during their task of

finding patterns within a set.
 1.2 Design Goals

 The primary design goals of this system are:

 1.2.1 Dependability criteria:

 Reliability – The system must accurately handle and display

 information to the end user.
 Security – The system must be secured against unauthorized

 users modifying a user’s local hard drive and it must properly

 inform the user of the need to read/write their hard drive by

 providing a signed certificate.
Robustness – The system should perform error checking on all inputs in order to catch invalid inputs and deal with them in such a manner to prevent the program from crashing or disrupting the user’s work. An example would be preventing the user from loading up a file for playback that is not actually a log file created by the system.
Availability – The system should be accessible to students and
 professors. It may also be used by other teachers and possible
 common non-related users.
 1.2.2 Performance criteria:

Response time – The system should take less than one minute to download to the user’s PC on a dialup connection. Once the system is downloaded to the user’s local PC, it should respond to all user input without any visible delay.
 1.2.3 Maintenance criteria:

 Modifiability – The system needs to be designed and

 implemented in an efficient object oriented manner in

 anticipation of any interface or functional application updates to

 the system.
 Readability – The system layout, design, and code needs to be
 easy to navigate and understandable by any developer who
 would later be modifying the code or adding additional features.

 This can be accomplished by utilizing clear coding standards and
 module descriptions.
 1.2.4 End User criteria:

 Usability – The system should be usable to a wide range of users
 from novice to expert, and should be intuitive.
 1.2.5 Design Tradeoffs

 This project we as designers needed to consider several different design tradeoffs. A main tradeoff that we needed to consider and work around is tile size vs. screen size. We needed to keep the tiles large enough so that all of the information on each tile could be seen at one time. This caused some conflict because the larger and clearer the tiles were the less of them we could display on the screen at once. The size of the tiles also brought up conflicts with the size of the grid area. We needed the grid area to be large enough to accommodate the patterns of the set. The patterns could be several tiles long or high. We could not afford to make the tiles smaller so we needed to add the functionality of the scrolling grid area to accommodate all different kinds of patterns. The tradeoff to make the grid larger then can be displayed at once forced us to trade the simplicity of our program and add a way to see the entire pattern at once by means of a mini-map.

The use of java is another design tradeoff that our group needed to make. We needed to consider the difference between functionality and the learning curve associated with learning the new language. The time that it takes to learn java was weighed against the need for additional functionality and the deadline we had for our project. After deciding to use the java language we had to determine the pros and cons of using an applet vs. application. The applets ability to be online-based and used from a web browser helped us determine that it would be better suited for our program. It seemed much better to allow the user to use the applet online instead of forcing to download an application for them to use.

Security was a main consideration of the group. We needed to determine who we should allow to use the system and what we would allow them to do. The security of the system was sacrificed in order to make the program available and ease of use. We decided that instead of trying to keep the applet secure by requiring a logon or some password we would allow all users to use the program. We also decided that we would allow the students and teachers to have the same access to the functionality of the program. This allowed us to only worry about developing a single interface for all users. Another security tradeoff that we needed to worry about was the submission of the results. We could have allowed the program to submit all the results to the professor, however this could lead to many complications for the professor due to users of the system that are not in her class. This would also complicit allowing other professors to use the system. So we decided that it would be better to have the submission of the results to the professor separate from the program. This means that the student would need to email the recoded file to the professor or give it to her on a disk.
1.2.6 Lifecycle Model

[image: image1.jpg]Software

| —
Concept
Requirements
*| Analysis

Complete and

Design and o
Architectural Implement Prototype untl
Design Initial Fsteng
Prototype

v

Release.
Prototype

 The lifecycle model that we will use for the entirety of project will

 be the waterfall model. However, within our coding and testing
 phases, we will gear our model to a more evolutionary
 prototyping approach.
 Given the small team size and project milestone deadlines, the

 waterfall model provides a solid lifecycle that we can follow
 without needing to make compromises to our goals or deadlines.
 During the coding and testing phases of the lifecycle, our project
 will take an evolutionary prototyping approach. It is very
 important that the system be easily understood and used by the
 users. This will require a strong focus on providing a good user
 interface for users to interact with the system.

 Therefore, the evolutionary prototyping will allow us to gather
 important feedback on each iteration of the prototype so that we
 may provide the best possible interface for the users.
 1.3 Definitions, acronyms, abbreviations

C.L.I.P - Chemistry Learning In Progress

Professor (teacher) – A user that accesses the system from the perspective of a certain role. This role includes the use of the playback and creation functionality.

Student – A user that accesses the system from the perspective of a certain role. This role includes the use of the tile arrangement functionality.

User – Every user has access to the entire functionality of the system. Generally a user fulfills the role of a professor or student as defined above.
 1.4 Web page
 A web page will be necessary in order to host the web-based

 application. In addition, the web-page will have tutorials on using the

 application and customizing it.

 Web-accessed ‘How-To’ Tutorial
 On the same page as the web-based application, a tutorial explaining

 how to use the various features will be provided. It will go through
 loading sets, creating/modifying sets, loading a recording, saving a
 recording, and a step by step to arranging tiles to create a solution.
 Web-accessed Application Setup Tutorial

 Available also on the page of the web-based application will be some

 basic step by step for customizing the application.
 Web page Setup
 The web page will consist of three components: the web-based

 application, the ‘how-to’ tutorial, and the application setup tutorial.
 1.5 References

 Read/Write with Applets

 http://www.captain.at/programming/java/

 Signing an Applet

 http://www.codeproject.com/useritems/Singed_Applet.asp

 http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/
 Our Website

 http://www.cs.siue.edu/SeniorProjects/f05g6/
2. Proposed System Architecture
 2.1 System Overview
Complete System
[image: image2.emf]User Interface

Module

Tile

Arrangement

Module

(Main Interface)

Grid Module

Play Area

Module

Data Module

Tile Arrangement Module

[image: image3.emf]Grid

Object

Play Area

Object

Tile

Arrangement

Module

(Main Interface)

Playback

Object

Record

Object

Minimap

Object

Data

Object

Data Module

[image: image4.emf]Data Module

Rule

Editor

Tile Editor

Pattern

Editor

Grid Module

[image: image5.emf]Grid Module

Grid

Structure

Grid

Visual

Play Area Module

[image: image6.emf]Play Area

Module

List Visual

List

Structure

User Interface Module

[image: image7.emf]User Interface

Module

Menu

System

Tile

Arrange

Object

 2.2 System Decomposition
There are 5 modules that make up our system. They are the User Interface module, Tile Arrangement module, Grid module, Play Area module, and Data module.

Grid Module
The Grid Module is responsible for displaying and storing the tile placements that occur by the user as they carry out the task of tile arrangement.

Play Area Module

The Play Area module is responsible for displaying and storing a listing of tiles not yet used by the user.

Data Module

The Data Module deals with the creation and modification of the set of tiles used by the system.

Tile Arrangement Module

The Tile Arrangement Module brings together the data module, grid module, and play area module allowing for the data created and loaded from the data module to move between the grid module and play area module freely. This also allows the tile positions in both the grid and play area modules to be logged for use by the playback component. The action of logging the positions is handled by the record component. Lastly, the mini-map component handles displaying a miniature version of the entire grid.

User Interface Module

The User Interface module handles the visual placement of components that the user can interact with. This includes the visual component of the grid, play area, playback controls, and mini-map. It also provides a way to load, save, create, and modify (through the menus) all of the data used by the system.
 2.3 Hardware/Software Mapping
 The CLIP system is online and requires that the user have a Java

 technology-enabled browser. All interfaces for the system will be

 stored on the server, with the system’s code being executed by the

 browser’s Java Virtual Machine. The system will have access to the

 hard drive of the user’s PC so that two files may be stored in

 secondary memory.

[image: image8.emf]1 *

Server Computer

User log file

User Tile

Creation File

Local Data Main

Memory

Web Browser /

Java enabled

Interfaces

Preloaded Tile

Sets

Broadband / Dial Up

 2.4 Persistent Data Management

 The Clip system will utilize the following files:

 Log file
The log file will store the list of moves made by the user. During

playback, this file will be read by the system in order to play back the

user’s moves.

 Rule Set file
 The rule set file will store rules and options that define a tile set.

 Information to be stored consist of set name, set description, tile size,

 ability to add a blank tile, and if pattern checking is enabled.

 Tile file

 The tile file will store a list of tiles, their unique integer id, and the

 path to the tile image.
 Image files

 The image files are the GIF images used to represent the tiles.

 Pattern file

 The pattern file will store all possible solutions that have been

 added to the tile set.
 2.5 Access Control and Security
 CLIP is an online system that is accessible to anyone with an internet

 connection and java enabled browser. There will be no restriction on
 the systems functionality regardless of the user. Security is only
 necessary on the server-side where the applet is signed

 indicating that any read/write action taken by the applet is

 appropriate.
 2.6 Global Software Control
 The system is event driven. The actions taken by the users either

 by dragging/dropping a tile, pressing a command button, or selecting

 menu option, will determine which sub system is activated. If there is

 no action taken by the user then system is idle.
 2.7 Boundary Conditions

 Initialization

 The system will be a java applet. It will be hosted at a location of our

 client’s choice and accessible to users via a java enabled web browser.
 It will allow the user to save their work as individual files to their own
 computer and also allow users to view the playback given a saved file.

 Termination

 The system will be shut down by exiting the web-browser.

 Failure

 After an unexpected client side failure, the system will display a brief,

 descriptive error message to the user before termination.
3. User Interface

The User Interface of the C.L.I.P system is important in recreating the look and feel of current system’s physical environment. Furthermore, the our system also focuses on providing ways to easily create/modify tile sets, load existing tile sets up for use in tile arrangement, and allow for easy play back of previously done tile arrangements.

Hierarchical View

The hierarchical view shows the hierarchy of controls for the user interface where at the top level is the startup (main) screen. Directly attached to it [startup screen] is the menu system, play area, grid, and playback controls. From there, each of those components consist of sub components that carry out the larger component’s purpose.

[image: image9.emf]Startup Screen

Menu System

Play Area

Grid

Playback Controls

File Menu

Tools Menu

Help Menu

Tile Listing

Minimap

Grid Display

Load Tile Set

Load Arrangement

Save Arrangement

Insert Blank Tile

Create Set

Modify Set

Check Pattern

How To

About CLIP

Main Screen – Initial Look

After the web page containing the applet has successfully loaded, the main screen will appear in a frame outside the web browser. This screen will contain a menubar, an empty grid, a set of greyed out playback controls, and an empty tile listing.

[image: image10.png]& CLIP (Chemistry Learning In Progress)

BEX]

File Tools Help

<

Time Elapsed
[

Jiava Appit Window

Load Tile Set Dialog

After a user has selected load tile set – under file menu – a load tile set dialog will appear. The dialog will display a listing of preloaded sets. These are the sets that are available from the web site hosting the applet. The user also has the option to browse for additional sets that may be located elsewhere.

[image: image11.png]£ Load Tile Set

Load Tile Set
Avalable Sets:

Shapes
Modified Shapes
Quizt

Quizz

Quiz3

Quizt

Modified Elements

Browse

Serach for sets:

ok || cancel

[Java Applet Window

Main Screen – Tile Set Loaded

After the user has selected a tile set, its contents will be loaded into the tile listing to the right of the grid.

[image: image12.png]& CLIP (Chemistry Learning In Progress) BEX
File Tools Help

—~ Acific

72

Orfolk ||

450

Hanghei

.4

Teily

2380

Hicago

2.1

«

< L I ID

Time Elapsed
" > — = n"

Jiava Appit Window

Create Set – Rule Editor, Tile Editor, Pattern Editor

When a user wishes to create a new set, they can select from the menu bar, Tools -> Create Set. A Create Set dialog will appear with 3 tabs. The first two tabs – Rule Editor & Tile Editor – are required, while the third, Pattern Editor, is not necessary. The rule editor outlines all the characteristics that define a certain set. The tile editor tab allows a user to start adding tile images to the set they defined under the rule editor. The last tab called pattern editor is an option for the user to decide what solution(s) will be included with the set so that pattern checking can be used.
[image: image13.jpg]& Create Set =]

Rule Eitor | Tie Edtor | Pattern Edtor |

Name:

Options: [Blank Tiles [] Add Patterns

Tile Size: o x

ok || cancel

Java Applet Window

[image: image14.jpg]L S - |

Rule Edtor | Tie Editor | Pattern Edtor |

Add Tile

Remove Tile

Load Set

Save Set

Image Here

ok || cancel

Java Applet Window

Insert Blank Tile
For some sets it is allowable to add blank tiles that take the place of tiles that are not in the set, but that the user believes need to be in order to fill in the gaps of a pattern. To add a blank tile, a user will select from the menu bar Tools-> Insert Blank Tile and a dialog with appear. In this dialog, the user will describe the characteristics of the missing tile.
[image: image15.png]LBlank Tile information 4

Description:

ok || cancel

[Java Applet Window

4. Subsystem Interfaces

Tile Arrangement Module

The Tile Arrangement module is the main module of the system that ties the all the modules together. Communication between the other four modules is handled by the Tile Arrangement Module. This module receives mouse events from the User Interaction module and passes them along to their intended module. This module sends and receives coordinates to and from the Grid and Play Area in order to handle tile movements between those two modules. The Data Module provides this module with set rules, tile information, and pattern information. The Tile Arrangement module also sends coordinates back and forth from the grid to the minimap. During recording, this module sends every tile movement to the Record module to store moves. During playback, this module receives tile moves from the Playback module.

User Interface Module

This module sends mouse events created by user mouse input to the Tile Arrangement module.

Grid Module

This module informs the Tile Arrangement module of every move it makes so that the moves may be recorded and the mini-map gets updated. It also passes coordinates along to the Tile Arrangement module when moving tiles to the play area as well as receives coordinates when moving tiles from the play area to the grid.

Playback Module

This module informs the Tile Arrangement module of every move it makes so that the moves may be recorded. It also passes coordinates along to the Tile Arrangement module when moving tiles to the grid and it receives coordinates when moving tiles from the grid back to the play area.

Data module

This module provides the Tile Arrangement module with information related to the current set. This information includes the set rules, the tile information, and the pattern information.

5. Packages and File Organization

Tile Files

The tile files are sets of picture files that are to be loaded by a user to be arranged on the grid. The system will begin with several different sets of tiles for use by the users. To allow the expansion of the program the system can have additional tile sets created. The tile file will store a list of tiles, their unique integer id, and the path to the tile image. This file will be created from the create set item in the tools menu.

Log Files

The log file stores information about all of the moves that were made including all of the blank tiles that were added while the user was using the program. This file will be created when the user is in creation mode and selects the “Save Recording” tab in the file menu. The menu will pop up a save file dialog box and allow the user to save the file to the local hard drive. This file will also be used in the Playback mode for file reading. The file will be accessed when the user selects the “Open Recording” tab in the file menu. The program will read all of the moves that are saved on the file and display them one at a time. All entries will be time-stamped with the time (hours:minutes:seconds) since the last action.

The file will have 4 different moves: (gg) when a tile moves from the grid area to a different position in the grid area, (gp) when a tile moves from the grid area to play area, (pg) when a tile moves from the play area to the grid area, (pp) when a tile moves from the play area to a different place in the play area. These actions will all have the same format:

Move type, tileID, initial position, final position, timestamp;
The program also needs to save other types of actions that take place such as add blank tile (ab) which will have the description that is entered by the user and this event will have a format of:

Move type, tileID, initial position, name, description;

Another move type is when the user enters a reason for leaving out a tile from a set. This move type (lo) has the format:

Move type, tileID, Reason, timestamp;

The last type of action that needs to have a move type is when the user is done with all moves and finishes saving the file (ed). All we do is make a timestamp of the event with format of:

Move type, timestamp;

Example of a Log File:

pg 4 0,3 40,60 0:1:12

pg 6 0,4 200,300 0:0:44

gg 4 40,60 800, 400 0:1:01

gp 6 200,300 0,0 0:0:18

pp 6 0,0 0,7 0:0: 33

ab 23 0,22 blanktileName “description”

….

lo 18 “this tile didn’t belong” 0:1:05

ed 0:0:05

Rule Set Files

The rule set file has all of the information about a specific set. It has all of the options that are enabled or disabled in the set, such as the ability to leave out tiles, add blank tiles, and ability to check pattern. This file will also store the information about tile size, the name of the set, and the description and rules associated with the set. This file will be made when a user creates a new set. This is through the create set tab in the tools menu. The user selects the option that should be enabled in the new set and the name and description of the set. This file can be edited by the modify set tab in the tools menu. It has a format similar to:

TileSetID

setName

setDescription
[width]x[height]

Blanktiles=[true:false]

Patterns=[true:false]

LeaveTilesOut=[true:false]

Image Files

The image files are the *.jpg or *.gif files that have the image of tiles on them. These are what will be used to display the information for the tile to the user. The user must create or find their own files for this purpose.
Pattern Files

The pattern files are the files that store information about the final arrangement of the tiles for a specific set. This file can be used to check to see if the solution the user has is one of the best solutions if the set allows it. This file will be created in the create set tab in the tools menu. The user will be allowed to set up certain final arrangements that would be considered correct. It would have a similar format to:

TileSetID

[numPatterns]

PatternName

PatternArray

6. Class Diagram
[image: image16.png]TeArmangement
!
EnterCreationMode() 1
[+EnterPlaybackMode()
il
I
1 i B 1 1
S| [s o] | [
MouseReleased() [+PattemEditor() [+AddBlankTile() [+UpdateView()
el e ‘ ;
T I\ 4 I
‘ ‘ | [
:
s
Raetor pextioren
[+PreviousMove()
Wi [*SaveRuleSet() | [+RemovePattern() [tChang: ySpeec
= o [
l+saveTieset) ‘SavePatternSet() Skip)

7. Testing
Module Testing

As detailed by the lifecycle model our coding and testing phases will follow an evolutionary prototyping approach. Therefore code will be written onto the latest approved version of the prototype. This eliminates the need for imitation drivers or stubs as the modules completed will be tested using the latest accepted version of the prototype. An example of this would be the testing of the playback module. Since the grid and playarea modules are already part of the prototype by the time the playback module is scheduled to be completed, we can test the module by loading a log file that contains tile moves from the play area to the grid. Then the test will be to see if these moves are visually displayed.

Integration Testing

Once members have finished coding and testing the individual modules that they are working on, the code will be written into the main prototype. Even though members will be using their own copy of latest version of the prototype while writing their code, it is not unreasonable to expect that different modules will be coded by different team members concurrently. Therefore this testing is to assure that the code being written into the main prototype is compatible with another member’s code and previously coded modules. An example of this would be testing the integration between the grid, tile arrangement, and playarea modules by moving a tile from the play area and placing it in the grid. The result would be immediately visible on the screen. The result can also be checked by looking at the log file created if the save arrangement button is clicked after the move.

System Testing

In our evolutionary prototyping development the system test will be a complete test over the systems expected functionality with the modules it contains at the time of testing. Since module and integration testing will be performed first, system testing is the last test to be performed before the prototype is advanced to the next acceptable version. This will be the version that the members will use as the driver to their new modules. The actual testing will consist of a repetition of all the module testing and integration testing that has taken place between version upgrades. System testing I will contain the tile arrangement, grid, and playback modules. System testing II will contain the previous modules plus the data module.

Acceptance Testing

After all of the functionality has been added to the system we will begin acceptance testing. During this testing the team will observe selected chemistry students using the system in the HCI lab. For this testing we are gong to enlist the help of ten students and six teachers that will be categorized into two separate groups and tested using two different methodologies.

Task Oriented

During these tests the user will be seated next to a team member in front of a computer running the system. The other team members will be in the other room of the HCI lab operating the cameras, VCR, and observing the test. The team member leading the test and next to user will be asking the user to perform a series of specific tasks on the system

Acceptance Testing I

User: Chemistry Student

Number of Users to be tested: 5

These tasks to be performed are:

- open the applet

- load the first tile set into the playarea

- reorganize the play area by taking the third tile and placing it in the first spot

- move all of the tiles to any locations on the grid

- arrange the tiles on the grid in the most logical arrangement according to the student

- move a specific tile from the grid to the playarea

- add a blank tile to the set of tiles

- save the final arrangement of the grid

- fill in the pop up form asking why they left the tile placed back into the playarea out of the final arrangement
During these sessions will be focusing primarily on the use of the system through the perspective of the student. Therefore, tasks that relate to the teachers role such as the playback of arrangements and tile set modifications will not be included. The team will record any mistakes the user makes, as well as their response as to why they made the mistake, while performing the tasks. Examples of mistakes may include clicking on the wrong menus or moving the tiles to wrong locations. We will also be keeping track of the time it takes the student to complete the task. From these tests we hope to discover any problems with interface that prevents the students from accessing the functionality of the system.

Acceptance Testing II

User: Chemistry Professor

Number of Users to be tested: 3

The tasks to be performed are:

- the same tasks as students

- open the recording the user submitted earlier

- move ten steps forward

- move a step backward

- auto play the rest of the moves till the last recorded move

- modify a tile set by adding another tile

- modify the same tile set by removing a different tile from the tile set

- create a new tile set from images preloaded onto the computer

- create a new best arrangement pattern for the new tile set

- adjust the rules of the new tile set to not allow students to input blank tiles

- adjust the rules of the new tile set to not allow students to add new best arrangement patters

- turn off the gridlines
These sessions will primarily focus on the use of the system through the role of the teacher. However they will need to complete the tasks the students have, because their
understanding of the systems is more complex. The teachers will be evaluated and observed the same way as the students. During these tests we hope to locate any misunderstandings the teachers may have due to the interface
organization.

Open Environment

These tests will be conducted similar to tests above. However the user will not be asked to perform or be guided through specific tasks. They will be given a brief description on the purpose of the system and be asked to simply use it. While they are guiding their way through the system the lead tester will be asking them questions about the language of the menu options, size of the forms, difficulty of scrolling, difficulty of using the minimap, colors of the forms, visibility of the information on the tiles, organization of the menus, and overall comfort with using the system. From these tests we hope to discover anything in the interface that is unappealing to the users.

Acceptance Testing III

User: Chemistry Student

Number of Users to be tested: 5

Acceptance Testing IV

User: Teacher

Number of Users to be tested: 5

8. Glossary
	Version #
	Date
	Author
	Description

	0.1
	10/05/05
	Brian Navarro
	User Interface Design, Research Topics

	
	10/06/05
	Neil Alfredson
	Purpose of the System, Design Goals (Except for Lifecycle model), Boundary Conditions, Packages and File Organization

	
	10/07/05
	Nathan Mikeska
	Lifecycle model, System Decomposition, and System Overview

	0.2
	10/08/05
	Richard Carney
	Global Software Control, Access Control and Security, Persistent Data Management, Hardware/Software Mapping. Revised the System Overview.

	
	10/08/05
	Brian Navarro
	More User Interface Design, Web Page Content Description, and Research Topics.

	
	10/08/05
	Nathan Mikeska
	System Decomposition (Revised), Subsystem Interfaces, Class Diagrams.

	
	10/08/05
	Neil Alfredson
	Testing

	0.3
	10/09/05
	Brian Navarro
	Design Specification Document Formatting, References

	0.4
	10/09/05
	Nathan Mikeska
	Class Diagram

	1.0
	10/09/05
	All Members
	Minor grammer and spelling fixes. Reviewed by team and accepted as version 1.0

	1.0 - 1.3
	10/09/05

12/07/05
	All Members
	Thorough revision of entire document. Most sections updated

26

_93986940.vsd
text

Data Module

Rule Editor

Tile Editor

Pattern Editor

_1194034801.vsd
text

Startup Screen

Menu System

Play Area

Grid

Playback Controls

File Menu

Tools Menu

Help Menu

Tile Listing

Minimap

Grid Display

Load Tile Set

Load Arrangement

Save Arrangement

Insert Blank Tile

Create Set

Modify Set

Check Pattern

How To

About CLIP

_1194781610.vsd
Server

Computer

1

*

User log file

User Tile Creation File

Local Data Main Memory

Web Browser / Java enabled

Interfaces

Preloaded Tile Sets

Broadband / Dial Up

_98507300.vsd
text

Grid Module

Play Area Module

Data Module

Tile Arrangement Module
(Main Interface)

User Interface Module

_88551084.vsd
text

Play Area Module

List Visual

List Structure

_90314828.vsd
text

Playback Object

Record Object

Minimap Object

Grid Object

Data Object

Play Area Object

Tile Arrangement Module
(Main Interface)

_93909692.vsd
text

Menu System

Tile Arrange Object

User Interface Module

_88197924.vsd
text

Grid Module

Grid Structure

Grid Visual

