Chemistry Learning In Progress
Design Specifications Document

Nathan Mikeska

Neil Alfredson

Richard Carney

Brian Navarro

Table of Contents
1. Introduction
3
1.1 Purpose of the System

3
1.2 Design Goals

3

1.2.1 Dependability Criteria

3

1.2.2 Performance Criteria

3

1.2.3 Maintenance Criteria

4

1.2.4 End-user Criteria

4

1.2.5 Design Criteria

4

1.2.6 Lifecycle

5
1.3 Definitions, acronyms, and abbreviations

5
1.4 Research Topics

5
1.5 Web Page

7
1.6 References

8
2. Proposed System

8
2.1
System Overview

8
2.2 System Decomposition

9
2.3 Hardware/Software Mapping

11
2.4 Persistent Data Management

12
2.5 Access and Control Security

13
2.6 Global Software Control

13
2.7 Boundary Conditions

13

3. User Interface

13
4. Subsystem Interfaces

19
5. Packages and File Organization

20
6. Class Diagram

21
7. Testing

21
8. Glossary

23
1. Introduction

 1.1 Purpose of the System

 This project can be a learning tool for students and it can also be a
 research tool used by professors. The card sorting activities are
 designed to give students a better understanding of the periodic table
 and how it is organized. It focuses on users finding and understanding

 the relationships between many attributes and how to organize
 patterns based around these relationships. This system could
 potentially be used in assignments for chemistry students. The user
 (such as a student) can save their results after using the application.
 Another user (such as a professor) can load up a user’s saved results at
 a later date. This accomplishes two things: You can view a user’s end
 solution and how they moved the cards to arrive at that solution.
 Provides observational data that can support the examination of a
 user’s thought process.

 1.2 Design Goals

 The primary design goals of this system are:

 1.2.1 Dependability criteria:

 Reliability – The system must accurately handle and display

 information to the end user either teacher or student
 Security – The system must be secured against unauthorized

 users modifying a user’s local hard drive.
 Robustness – The system must be able to withstand the strain of

 a certain size of users at peak times with out crashing or
producing errors. It must be able to withstand invalid user inputs.

 Availability – The system should be accessible to students and
 the teacher. It may also be used by other teachers and possible
 common non-related users.

 Fault tolerance – The system must be able to detect erroneous

 data and call attention to the user.

 1.2.2 Performance criteria:

 Response time – The system should respond to user queries and

 requests in a timely manner, without long delays regardless of

 internet connection.
Memory – The system should appropriately manage its memory

usage to optimize speed and performance and to prevent
 memory leaks.
 1.2.3 Maintenance criteria:

 Modifiability – The system needs to be designed and

 implemented in an efficient object oriented manner in

 anticipation of any interface or functional application updates to

 the system including loading new tile sets.
 Readability – The system layout, design, and code needs to be
 easy to navigate and understandable by any developer who
 would later be modifying the code or adding additional features.

 This can be accomplished by utilizing clear coding standards and
 module descriptions.
 1.2.4 End User criteria:

 Usability – The system should be usable to a wide range of users
 from novice to expert, and should be clear enough to intuitively
 define what is required by the user and what the user is supposed
 to do, and what the user is allowed to use.
 1.2.5 Design Tradeoffs

 Designers have to make several tradeoffs over the course of a

 project, some of them include space vs. speed, delivery time vs.
 functionality, and using databases vs. files. The first tradeoff
 involves space vs. speed, if the response time or throughput of

 the software does not meet requirements, more memory can be
 used to speed up the software. If the software does not meet
 memory space constraints the data could be compressed to

 save space at the cost of speed. The next decision that has to be
 made is delivery time vs. functionality. If time runs

 short, less functionality can be delivered on time or full
 functionality can be delivered at a later date. The team will satisfy
 the functional requirements as stated in the Requirements

 Analysis Document. Any other additional non-major functionality
 will be sacrificed due to the fixed delivery time of the system.

 The final tradeoff is whether to use a database vs. file for storage.
 The latter is good for storing large files such as images or for
 storing temporary files, but it would not be scalable to multiple
 users. A database, on the other hand, can provide access to

 multiple platforms and allows concurrent users.

 1.2.6 Lifecycle Model

 The lifecycle model that we will use for the entirety of project will

 be the waterfall model. However, within our coding and testing
 phases, we will gear our model to a more evolutionary
 prototyping approach.
 Given the small team size and project milestone deadlines, the

 waterfall model provides a solid lifecycle that we can follow
 without needing to make compromises to our goals or deadlines.
 During the coding and testing phases of the lifecycle, our project
 will take an evolutionary prototyping approach. It is very
 important that the system be easily understood and used by the
 users. This will require a strong focus on providing a good user
 interface for users to interact with the system.

 Therefore, the evolutionary prototyping will allow us to gather
 important feedback on each iteration of the prototype so that we
 may provide the best possible interface for the users.
 1.3 Definitions, acronyms, abbreviations

 Tile set - a group of related image files that contain the information for
 a student to organize.

 Tile - This is the digital equivalent to the paper card in the current

 system. However, when in the play area it will be referred to as a card.

 Therefore, both terms (card and tile) refer to the same object, but only

 differ in referencing terms based on their location.
 1.4 Research Topics

 Java Applets

 In order to accommodate for our client’s web-based requirement, we
 have been researching the use of Java Applets. Java Applets are Java

 written applications that are accessed via the internet through a java-

 enabled web browser such as Internet Explorer or Mozilla Firefox.

 Our research has raised a concern with reading/writing of files. This

 is more explained in Web Security Issue section. Furthermore, the

 other limitations of applets must still be explored.

 Web Security Issue
 Due to the nature of Java Applets being web-based, they raise a few

 security issues relating to the reading and writing of files to a local

 computer. By default Applets are not allowed to alter a computer’s

 files due to built-in security manager within the Java language. The
 work-around to this is to sign the applet with a ceritificate indicating it
 is safe to allow this program to read/write. Signing an applet can be
 done with a Microsoft Sign Tool, by purchasing a certificate from
 Verisign, or unofficially sign the applet with the included Java sign-tool
 where you create your own certificate with name, organization,
 location, and password indicating that the applet is safe to allow
 read/write. This is something to be discussed with our client still.
 Input/Output File Format
 The necessary information that must be in each of the files we intend
 to use still needs to be researched.
 Tiles Sizes
 Currently we do not know the dimensions we need for our tiles. This

 issue needs to be discussed with our client to determine if varying tile

 sizes is what she will want as some sets require different amounts of

 information.

 Patterns

Patterns are defined solutions that will be used to match user’s solution

against to check for correctness. This is currently not fully understood

and defined so it is still being researched and explored. Therefore, the

option of the Pattern Editor now shown in the User Interface may be

removed at a later date if it is discovered that we can not accomplish it.

It is not a required feature, but would be useful to incorporate.
Grid Size

The Grid size is unknown at the moment, partly due to the fact that tile

sizes are not known either. In addition, the maximum amount of

cards that a set would ever have and how big each card in that set

would be affect how big the grid needs to be. Furthermore, whether or

not scrolling will be allowed deeply affects the size since we are dealing

with limited space so this issue needs to be researched and resolved.
Mini-map
Due to the fact that the grid size requirement (which is not known yet)

by our client may be too large to show on the screen all at once, we

will have to use scrolling. In order to deal with this, we are currently

researching the idea of using a mini-map which will show a miniature

version of the entire grid and the locations of each tile. Whether or not

this is possible given time and experience constraints is what must be
researched.

 Programming Language

 Our Requirements Analysis document has led to potentially choose the

 Java language since it is well-known for allowing the creation of web-

 based applications, though the language when used to create applets,
 tend to create simple and small applications. More research must be
 done in this area to assess the viability of using Java to accomplish all

 we need through a web-based application.

 Development Tools

 Our development tools thus far have included Microsoft Word/Paint

 for User Interface Design, Microsoft Visio for Diagram Design, and

 Macromedia Dreamweaver for Website Development. In the future,

 we will be using most likely JBuilder 10 Foundation Edition for our

 hi-fi prototype and finished product, and SmartFTP for uploading the
 applet and the corresponding web-page to a web-server.

 1.5 Web page
 A web page will be necessary in order to host the web-based

 application. In addition, the web-page will have tutorials on using the

 application and customizing it.

 Web-accessed ‘How-To’ Tutorial
 On the same page as the web-based application, a tutorial explaining

 how to use the various features will be provided. It will go through
 loading sets, creating/modifying sets, loading a recording, saving a
 recording, and a step by step to arranging tiles to create a solution.
 Web-accessed Application Setup Tutorial

 Available also on the page of the web-based application will be some

 basic step by step for customizing the application.
 Web page Setup
 The web page will consist of three components: the web-based

 application, the ‘how-to’ tutorial, and the application setup tutorial.
 1.6 References

 Read/Write with Applets

 http://www.captain.at/programming/java/

 Signing an Applet

 http://www.codeproject.com/useritems/Singed_Applet.asp

 http://java.sun.com/j2se/1.4.2/docs/guide/plugin/developer_guide/
 Our Website

 http://www.cs.siue.edu/SeniorProjects/f05g6/
2. Proposed System Architecture
 2.1 System Overview
 Complete System

[image: image13.wmf]

Load

 Recording

Save

Recording

1

2

6

5

7

8

9

3

4

Not in User End Solution (Play Area Remains)

User End Solution

User End Solution

Not in User End Solution (Play Area Remains)

Plays

Records

1

2

6

5

7

8

9

3

4

The

Grid

The Play Area

The

Grid

The Play Area

Tile Arrangement System

[image: image2.emf]Tile Arrangement / Main

Interface

Record

PlayBack

User Interaction

Creation Mode System

[image: image3.emf]Creation Mode

Rule Editor

Tile Editor

Pattern Editor

 2.2 System Decomposition
 The system is divided into four main subsystems. The Grid and
 PlayArea are the two subsystems that make up the main interface of
 the program and interact with the user. The Creation subsystem is
 responsible for the creation and modification of tile sets. The Tile
 Arrangement / Main Interface subsystem is the subsystem that ties
 together the rest as well as handles communication between most
 parts of the program.

 Breaking down the system into these smaller subsystems and modules
 serves a couple purposes. First of all, it provides a good layout for the
 architecture of the system. It makes the system easier to understand
 and allows for tackling one problem at time. Second, it allows for
 team members working in parallel on different parts of the system at
 the same time. The biggest goal in the subsystem decomposition is to
 minimize the coupling between modules and maximize the cohesion
 within modules. This makes the system easier to understand and
 implement.

 The Grid

 The Grid is a grid where the arrangement and display of tiles is done.
 The grid works through drag-and-drop event driven interaction with
 the user.

 The PlayArea
 The PlayArea is located to the right of the grid and is where tiles are

 located when not currently placed on the grid. Tiles within the
 PlayArea may be sorted by the user if they wish by the drag-and-drop
 method.

 Tile Arrangement / Main Interface
 This subsystem is one of the most important subsystems in the
 system. This is the module that ties together the other subsystems
 and handles communication between the subsystems. Within this
 subsystem exist the Record, Playback, and User Interaction modules.

 Record

 This module is the module that governs the arrangement and
 recording of tiles. This module handles what has been referred to as
 the Tile Arrangement Mode. Its main function is to record the user’s
 movement of tiles on the Grid and PlayArea.

 Playback

 This module is what handles Playback Mode. Its purpose is to read
 information from log files and allow the user to view the moves
 recorded in the log file. This subsystem allows the user to skip
 forward and backwards through the list of the user’s moves. It also
 allows for automatic playback of the user’s moves.

 User Interaction
 This subsystem is the module of the Tile Arrangement / Main
 Interface subsystem that handles all the user interaction. This mainly
 consists of handling mouse clicks and dragging and sending the
 necessary information back to the Tile Arrangement / Main Interface
 module.
 Creation Mode
 This is the subsystem that handles the creation and modification of tile
 sets. It includes and ties together the functionality of the Tile Editor,
 Rule Editor, and Pattern Editor modules.

Tile Editor The Tile Editor is what handles the addition, deletion, and

modification of tiles within a set.

 Rule Editor

 The Rule Editor is responsible for the modification of each tile set’s
 rules. It allows the user to modify rules and then the module writes
 these rules to the tile set’s rule file.

 Pattern Editor

 The Pattern Editor handles the addition and deletion of patterns from

 tile sets. It uses the functionality of the Grid to arrange the tiles into
 patterns.

 2.3 Hardware/Software Mapping
 The CLIP system is online and requires that the user have a Java

 technology-enabled browser. All interfaces for the system will be
 stored on the server, with the system’s code being executed by the
 browser’s Java Virtual Machine. The system will have access to the
 hard drive of the user’s PC so that two files may be stored in
 secondary memory.

[image: image4.emf]1 *

Server Computer

User log file

User Tile

Creation File

Local Data Main

Memory

Web Browser /

Java enabled

Interfaces

Preloaded Tile

Sets

Broadband / Dial Up

 2.4 Persistent Data Management
 The system will handle persistent data through the use of a flat file.
 When the user performs a drag drop operation the tile id, original
 location, new location, and system time of the tile’s movement will be
 stored in main memory on the PC.
 When the user selects submit arrangement the log information in

 main memory will be flushed and written onto a text file located on
 the PC’s secondary memory.
 During playback mode the information from this text file will be
 loaded into the main memory of the PC. From there it can be
 accessed and the user’s movements can be sequentially viewed.
 Another file will be created upon the user entering creation mode.
 This file will contain the information about the user’s created tile set.
 This information will include the number of attributes an individual
 tile has, the number of tiles included in the set, the values of the
 attributes for each individual tile, the id of each individual tile, and the
 acceptable patterns associated with the arrangement of the grid for the
 tile set. This file will be stored on the secondary memory of the PC.
 When the user uses the system the information from this file will
 be loaded into main memory and the user tile set will be included
 among the preloaded tile sets. The preloaded tile sets will be stored

 similarly but on the server not the users PC.

 2.5 Access Control and Security
 CLIP is an online system that is accessible to anyone with an internet
 connection and browser. There will be no restriction on the systems
 functionality regardless of the user. Security is only necessary on the
 side of the server where preloaded card sets will be added to the
 system by an authorized instructor.
 2.6 Global Software Control
 The system is event driven. The actions taken by the users either
 by dragging/dropping a tile, pressing a command button, or selecting
 menu option, will determine which sub system is activated. If there is
 no action taken by the user then system is idle.
 2.7 Boundary Conditions

 Initialization

 The system will be a java applet. It will be available to the user
 through the web-browser at a location of our client’s choice. It will
 allow the user to save their work as individual files to their own
 computer and also allow users to view the playback given a saved file.

 Termination

 The system will be shut down by exiting the web-browser.

 Failure

 After an unexpected failure, the system will display a brief, descriptive

 error message to the user before termination. The system will not
 create any sort of backups to the data within the system.
3. User Interface

 Introduction

 The User Interface of the C.L.I.P web-based application is at the center of
 the transformation from the current system to the proposed system. This

 is because the interaction of the current system is physically carried out and

 therefore must feel the same way in the proposed system. The way we are
 accomplishing this is through a visual environment that represents the

 components of the physical environment and still allows for the same easy
 interaction with the new environment. The remaining areas of the User

 Interface section will explain what they are meant to accomplish.

 Menu System – Setup
File Menu – Loading/Saving a User End Solution
· Load Recording
· Save Recording
- Load Card Set
Edit Menu – Card Sets can be created, loaded, and modified.
· Create Set
Tools Menu – Options relating to the customizing the application to your preference.
· Application Options (Undecided)
· Other Options (Undecided)
Window Menu – Undecided
· ?

Help Menu – Information on tutorials and about the application.
· ‘How To’ Tutorial (Web-accessed)
· Application Setup (Web-accessed)
· About

 Startup Screen

 The startup screen appears with just The Grid and an empty window

 that represents the play area. This window will have several components
 like an area for the list of tiles, the recording-playback features, check-
 pattern button and new-card tile button. More info on the play area can

 be found in the next section. The user will start using the web-
 based application by clicking under the file menu – load card set, which will
 allow the user to choose an existing card set and load it into the play area so
 they can be begin their task. This leads us into discussing the play area.
[image: image1.emf]Tile Arrangement / Main

Interface

Creation Mode Grid Play Area

 Play Area Windows – Possible Versions
 There exist different versions of the Play Area windows due to several
 existing User Interface design impasses. However, there are some basic
 things that all play areas no matter what design is chosen need to
 accomplish. These include: providing a reasonable sized area to list and
 display the tiles and their information, record-playback components, a new
 card button, and a check pattern button. The complete design of the Play
 Area is unknown at this moment due to User Interface problems that have
 arisen. More information on this is discussed in the Research Topics area
 (ie: Grid Size, Tile Size, Mini-Map, etc..
[image: image6.jpg]Eint Oston. Feland

w1 o 3

Haa Evork Razil Apan
€

267 1 8

Hile ks Etioit Orea

1 52 R B

 File Menu Design Actions
 The file menu contains our some commands that accomplish a large part of

 our intended functionality. This includes Loading a recording, Saving a

 recording, and Loading a card set into the Play Area.

 The first command, Load Recording, allows for a user to load and play

 another user’s solution from beginning to end where at the end the final

 solution is presented, including what tiles were not used.
 The second command, Save Recording, allows for the current user to save
 their final solution, including any tiles they leave in the play area.

 The final command, Load Card Set, allows for the current user to load the
 tile set that they wish to arrange. When the user selects this option, it turns
 on the recording option, waiting for the first movement of a tile before it
 starts recording.

[image: image7.wmf]

Application Options

Other Options

Application Options (Undecided)

Other Options (Undecided)

[image: image8.wmf]

How To Tutorial

About

Application Setup

‘How To’ Tutorial

 (Web accessed

)

Application

Tutorial (Web accessed)

About the Application

Chemistry Learning In Progress

Richard

Carney

 Brian

Navarro

Nathan

Mikeska

 Neil

Alfredson

About C.L.I.P.

 Edit Menu Design Action

 The Edit Menu lists a single command called Create Set. This will be

 responsible for showing the user all the possible choices for working with a

 set including creating/modifying the rules for a set (ie: name, desc, and

 other options), creating/modifying the cards for a set, and finally

 creating/modifying the patterns (best possible solutions) that are a part of

 the set. Currently the Card Set Editor is the only option designed. The

 others require research to be done for their particular capabilities.
[image: image9.wmf]

Create Set

Card 1

Card

2

Card

3

Card 4

Card 5

Card 6

Card 7

Card 8

Card 9

Add Card

Remove

 Card

Modify

Card

Selected Card

Image

Save Set

Load Set

Card 10

Card 11

Card 12

Car

d 13

Card 14

Card 15

Card 16

Choose an

 Editor

Rule

 Set

 Editor

Card Set Editor

Pattern

Set

Editor

OK

Cancel

Card Set Editor

OK

Cancel

Card Set Editor Option

 Tools Menu Design Action
 It is unknown what options we will provide to the user to customize the

 application to their preferences. Those are being researched.
[image: image10.wmf]Chemistry Learning In Progress

The Grid

File

Edit

Tools

Window

Help

Chemistry Learning In Progress

The Grid

File

Edit

Tools

Window

Help

 Help Menu Design Action
 The Help menu has 3 options. The first two deal with providing

 information on where to look for information on using the application and

 customizing the application, respectively. The actual information on this

 will be provided on the website where the applet is hosted. The last

 option provides information on the designers of C.L.I.P. project.
[image: image11.wmf]

Load Card Set

‘Open File’ browser

File Name

File

s of Type

Open

Card

Cancel

Open

.set

4. Subsystem Interfaces

 The Grid

 The Grid communicates with the Tile Arrangement / Main Interface

 subsystem. That interface then handles communication between the Grid
 and the other modules. The communications will mainly consist of grid
 coordinates and tile IDs passed back and forth between the Grid subsystem
 and the Tile Arrangement / Main Interface subsystem.

 The PlayArea
 The PlayArea communicates with the Tile Arrangement / Main Interface

 subsystem. That interface then handles communication between the
 PlayArea and the other modules. The communications will mainly consist
 of tile IDs passed to and from the Tile Arrangement / Main Interface
 subsystem.

 Creation Mode

 This subsystem does little communication with the Tile Arrangement /
 Main Interface subsystem except passing information between that module
 and the Pattern Editor.

 Tile Arrangement / Main Interface
 This subsystem handles all communication between the Grid, PlayArea,
 and the other subsystems. Its communication lines are explained more
 thoroughly in the descriptions of the other modules that communicate with
 it.

 Record

 This module only communicates with the Tile Arrangement / Main
 Interface module. It receives information stored in memory about user
 moves and then writes that information to a file.

 Playback
 This module reads in information concerning user moves and stores them
 in memory. It then passes this information to the Tile Arrangement / Main
 Interface subsystem.

 User Interaction
 This module handles communication between the user and the rest of the
 system. It receives input from the user via keyboard or mouse and passes
 this information to the Tile Arrangement / Main Interface module.

 Tile Editor

 The Creation Mode subsystem passes the set and tile information of the
 currently loaded set to this module. That information is then passed back
 when this module closes.

 Rule Editor
 The Creation Mode subsystem passes the set information of the currently
 loaded set to this module. That information is then passed back when this
 module closes.

 Pattern Editor
 The Pattern Editor relies on the Grid so grid coordinates get passed to and
 from this module going through the Creation Mode subsystem. The
 Creation Mode subsystem also passes the set and tile information of the
 currently loaded set to this module. That information is then passed back
 when this module closes.

5. Packages and File Organization

 Tile Files

The tile files are sets of picture files that are to be loaded by a user to be arranged on the grid. The system will begin with several different sets of tiles for use by the users. To allow the expansion of the program the system can have additional tile sets created.

Example of Tile set:

[image: image12.wmf]

Element Symbol P

Element Symbol T

Element Symbol W

Element Symbol X

Element Symbol: Blank

Element Symbol B

Element Symbol Z

Selected Card Information

Element Symbol: D

Element Symbol

K

Element Symbol U

Element Symbol Y

Element Symbol G

Element Symbol I

Mini

-

Map

Input/Output Files

This project will require the use of input and output files in order for the playback functionality to work properly. When a user of the system loads a set of tiles we will begin recording all of the moves that he/she makes. The system will record each time that a user drags a card from its current location and record where the user sets down the card. The program will place all of this information into a file when the user saves. The program can use this file in order to playback every move that was made during the organization of a certain set of cards.

6. Class Diagram
[image: image5.jpg]TileArrangement

[ErerCeatortiode) | 1
[+€ntorRecordhode()
iEnterPlaybaciviodsi)
'user\nmmnm()l 1
Ny
1 4 1
Greation Grid PlayArea
[FTieEdon) FPGRpTIE | (FPeRupTIED
[+RuleEdiort) liDropTiet) | [-DropTieq
[+PatemEdior) [+AddBlarkTI0 |
[isaveseto 1
I Record Playback
i 1
1 IS FFopertoan
TilcEditor PattemEditor 0] o o
tor l+Prvioushiove
S [+AutoPiay()
e i |+ChangeuioPtaySpeeti)
RemoveTlel) | [SmeRuesel)| [+RemovePatiem [:SkipToMove)
+ModifyTie() 0] [Sepanca .
. SaveTileSet()

7. Testing
 Testing will consist of four parts: Module testing, Integration testing,
 System testing, and Acceptance testing.
 Module Testing

 The behavior of each module in our system will be tested once it has been
 completed. This will be repeated until each module in our system acts as
 intended. Outputs will be examined after a set of test input has been
 entered. Each module will be tested both with expected and boundary
 inputs to ensure that it behaves properly up to established limits. This will
 allow us to guarantee that each module works properly within the limits
 that we have set.

 XE "Module Testing"
 Integration Testing XE "Integration Testing"
 After the completion of module testing, each component will be tested for
 compatibility with established system sections. Stubs and drivers will be

 used to imitate any sections that have not yet been completed.

 System Testing

 Following the completion of each delivery cycle each system will be tested
 to ensure that it performs as intended. Usability testing will also be
 performed at the end of each delivery cycle to ascertain the system’s ease of
 use and determine possible changes for its improvement. Usability will
 probably be the most important aspect of the testing, because making sure
 that the students and professors like our program will determine if it gets
 used. XE "System Testing" Interaction tests will be performed with the systems to determine that

 all functions are operating correctly. Sample systems will be designed in
 advance to test expected and boundary functionality of the system.

 Acceptance Testing XE "Acceptance Testing"
 Throughout the development of the project, we will from time to time

 show our client Professor Susan Wiediger portions of what we have created
 to ensure that our design meets his needs. We will also develop
 screenshots of what our interface will look like to make sure it is acceptable
 before we finish designing it. This will give us the ability to make any
 changes to the system Professor Wiediger sees fit during development. If a
 portion of the system is not working to her approval, it will be redone until
 it meets her standards. We have already shown and had approval of some
 of the aspects of our system due to screenshots of the grid and play area. XE "Test Plan"
 Prototype Testing
 Our team will develop prototypes

Low-Fi

Our group will develop a lo-fi prototype in order to show it to our client and for usability testing. This will likely be screen mockups and paper implementation. This will allow us to determine if certain aspects of our intended user interface will be understood by the users. We will nee to let both the professor and a number of students to use the prototype. This will help us be reasonably sure that all of the intended users will be able to understand and use the software we are developing

Hi-Fi

We will also develop a more high-end prototype to help us test the functionality of the program. This will be developed using a high-level language and be very similar to the end product. We will use this prototype to smooth out only relatively simple details. The team will also use students and the professor to make sure that everything works as intended and is a viable end product. This prototype will be developed only after the lo-fi prototype has and finalized and we are sure that are general design is easy to use and understand.

8. Glossary
	Version #
	Date
	Author
	Description

	0.1
	10/05/05
	Brian Navarro
	User Interface Design, Research Topics

	
	10/06/05
	Neil Alfredson
	Purpose of the System, Design Goals (Except for Lifecycle model), Boundary Conditions, Packages and File Organization

	
	10/07/05
	Nathan Mikeska
	Lifecycle model, System Decomposition, and System Overview

	0.2
	10/08/05
	Richard Carney
	Global Software Control, Access Control and Security, Persistent Data Management, Hardware/Software Mapping. Revised the System Overview.

	
	10/08/05
	Brian Navarro
	More User Interface Design, Web Page Content Description, and Research Topics.

	
	10/08/05
	Nathan Mikeska
	System Decomposition (Revised), Subsystem Interfaces, Class Diagrams.

	
	10/08/05
	Neil Alfredson
	Testing

	0.3
	10/09/05
	Brian Navarro
	Design Specification Document Formatting, References

	0.4
	10/09/05
	Nathan Mikeska
	Class Diagram

	1.0
	10/09/05
	All Members
	Minor grammer and spelling fixes. Reviewed by team and accepted as version 1.0

	
	
	
	

2

_1190210307.vsd
Name
Title�

Name
Title�

Name
Title�

Name
Title�

Name
Title�

Name
Title�

Team Title�

Name�

Company Name
��

�

�

Company Name
Department Name�

Tile Arrangement / Main Interface�

Record�

PlayBack�

User Interaction�

_1190210477.vsd
Name
Title�

Name
Title�

Name
Title�

Name
Title�

Name
Title�

Name
Title�

Team Title�

Name�

Company Name
��

�

�

Company Name
Department Name�

Creation Mode�

Rule Editor�

Tile Editor�

Pattern Editor�

_1190314231.vsd
�

�

Server�

Computer�

Name
Title�

Name
Title�

�

�

�

1�

�

*�

�

User log file�

User Tile Creation File�

Local Data Main Memory�

Web Browser / Java enabled�

�

Interfaces�

Preloaded Tile Sets�

Broadband / Dial Up�

_1190210269.vsd
Name
Title�

Name
Title�

Name
Title�

Name
Title�

Name
Title�

Name
Title�

Team Title�

Name�

Company Name
��

�

�

Company Name
Department Name�

Tile Arrangement / Main Interface�

Creation Mode�

Grid�

Play Area�

