Free Shell Live

Requirements Specification

 v1.0
Team Extreme
Jonathan Birch

Bryan Kimbro

Mark Sparks

Greg Chabala

1. Introduction

1.1 Overview

SIUE periodically offers a class in expert systems. In order to soften the learning curve presented in this class, a shell program is used by students to develop and execute expert systems. Originally, the program used for this purpose was Exsys CORVID. This program required a licensing fee, so in 2003 a senior project team was assigned to develop a replacement. The result was Free Shell.
Although it is functional, Free Shell lacks certain features that are present in CORVID. CORVID is capable of producing a web interface for an expert system, but Free Shell is not. Also, Free Shell currently has no capability for editing rules that have already been placed in an expert system. Finally, a number of students have complained about certain aspects of the Free Shell interface.
Dr. Yu has asked us to produce an updated version of Free Shell. This new version will incorporate the functionality present in the current application. Expert systems students will be able to use a graphical user interface (GUI) to design rule sets. Novice users will then be able to run the expert systems generated this way through a different GUI and observe the results.
Updates in this new version will include the ability for novice users to interact with an expert system through a web-based GUI. This GUI will be enhanced with the option for users to query the system for the rules that led to a question being asked. Additionally, the rule design system will be altered to incorporate a capability for editing of rules already in place. Options to check for logical contradictions in rules and completeness will also be added. This system will increase the usability, stability, and usefulness of the current Free Shell program.

(Describes the problem domain (i.e., the application), the client, the type of system to be developed, and the purpose of the system. (Updated from Problem Statement))

1.2 Scope

Describes the system’s overall functionality, how the system fits into the overall business or strategic objectives of the client’s organization, and how it will work with other systems. (May include statements about specific functionality that the system will not include.)

1.3 Definitions, Acronyms, and Abbreviations

Defines the technical terms used in the document that may be unfamiliar to its readers, especially end users or management.

1.4 References

References to development context, e.g., problem statement, existing or related systems

1.5 Overview of the Remainder of the Document

One paragraph that describes the organization of the remainder of the document.

2. Current System

Describes the current state of affairs. If the new system will replace an existing system, describes the functionality and the problems with the current system; otherwise, describes how tasks supported by the new system are accomplished now.

3. Proposed System

3.1 Target Environment

This system is to be used by students of Dr. Yu’s expert systems class. The software will be capable of running on Microsoft Windows platforms. The web interface will be usable through Microsoft Internet Explorer 6.

(Describes the deployment environment including a description of the physical environment and the types of end users. (Updated from Problem Statement))

3.2 Functional Requirements

· Inference engine using forward and backward chaining

· Knowledge base editor with a GUI that allows expert users to create knowledge bases

· Add rule

· Remove rule

· Edit rule

· Print rules in IF / THEN form

· Save knowledge base

· Open knowledge base

· Preview the expert system

· Check expert system for logical contradictions

· Check expert system for completeness

· Web-based GUI that allows casual users to run the expert system

· Display questions, accept answers, display results

· Allow users to skip questions

· Users must enter a probability representing the certainty of their answer to each question

· Allow users to query why a question was asked and at minimum respond with the rules that led to the question being asked

· Certainty factor algebra to deal with uncertainty and probability

(One paragraph listing bullets giving a short description of each major functional requirement followed by short paragraphs describing each requirement in more detail. (Updated from Problem Statement))

3.3 Non-functional Requirements

· Knowledge base editor must run on Windows (2000/NT/XP) platform

· Web-based GUI must run in Internet Explorer 6.0

· GUIs must be designed for ease of use

· System must be designed to respond quickly to users

· Knowledge base editor must maintain a list of recently opened knowledge base files

· System must be well documented and easy to modify

· Documentation must include a tutorial and sample knowledge bases

(One paragraph listing bullets giving a short description of each major nonfunctional requirement, including constraints placed by the client (such as the choice of a programming language, tool, or platform) followed by short paragraphs describing each requirement in more detail. (Updated from Problem Statement, see also OOSE, p. 147))

3.4 System Models

3.4.1 Use Case Model
Use Case Name

AddRule

Participating Actor

ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has a knowledge base open that contains at least one variable and wants to add a rule

Flow
1. ExpertSystemDesigner selects add rule functionality

2. ExpertSystemDesigner enters a new test condition or selects an existing one

3. ExpertSystemDesigner enters a new variable assignment or selects an existing one

Exit Condition
The rule has been added to the knowledge base or the system informs the user that the rule would cause a contradiction.

Use Case Name

RemoveRule

Participating Actor

ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has a knowledge base open with at least one rule in it and wants to remove a rule

Flow
1. ExpertSystemDesigner selects the rule to remove

2. ExpertSystemDesigner clicks remove functionality

Exit Condition

The rule was removed from the knowledge base

Use Case Name

EditRule

Participating Actor

ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has a knowledge base open with at least one rule in it and wants to edit a rule

Flow
1. ExpertSystemDesigner selects the rule to edit

2. ExpertSystemDesigner clicks edit functionality and makes the desired changes

Exit Condition

The rule was edited and the changes saved

Use Case Name

PrintRules

Participating Actor

ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has a knowledge base open and wants to print the rules

Flow
1. ExpertSystemDesigner selects print functionality

Exit Condition
The rules are printed in IF / THEN form

Use Case Name

SaveKnowledgeBase

Participating Actor

ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has a knowledge base open and wishes to save it

Flow
1. ExpertSystemDesigner selects Save knowledge base functionality

2. ExpertSystemDesigner enters a filename

3. ExpertSystemDesigner selects “Save”

Exit Condition
The knowledge base is saved successfully

Use Case Name

OpenKnowledgeBase

Participating Actor

ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has access to a knowledge base and wants to open it

Flow
1. ExpertSystemDesigner selects Open knowledge base functionality

2. ExpertSystemDesigner selects the knowledge base to open

3. ExpertSystemDesigner selects “Open”

Exit Condition

The knowledge base is opened successfully

Use Case Name

PreviewSystem

Participating Actor

ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner wants to preview the expert system

Flow
1. ExpertSystemDesigner selects the preview functionality

Exit Condition
The expert system is run without leaving the knowledge base editor

Use Case Name

SkipQuestion

Participating Actor

SystemUser

Entry Condition
SystemUser is running the expert system and wants to skip a question

Flow
1. SystemUser selects skip question functionality

Exit Condition
The question is skipped and the expert system moves to the next question

Use Case Name
CheckForCompleteness

Participating Actor
ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has a knowledge base open and wants to check for completeness

Flow
1. ExpertSystemDesigner selects the CheckForCompleteness functionality

Exit Condition
Knowledge base is complete and the knowledge base editor confirms this or the knowledge base is incomplete and the knowledge base details the incompleteness.

Use Case Name
EditKnowledgeBaseExternally

Participating Actor
ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has a knowledge base and want to edit it outside the knowledge base editor.

Flow
1. ExpertSystemDesigner edits the knowledgebase files using a word processing program.

Exit condition
Knowledge Base file is edited.

Use Case Name
Publish

Participating Actor
ExpertSystemDesigner

Entry Condition
ExpertSystemDesigner has a knowledge base and wants to publish to the web

Flow
1. ExpertSystemDesigner selects publish functionality.

2. ExpertSystemDesigner enters a file name

3. ExpertSystemDesigner selects "Publish"

Exit Condition
HTML files comprising an executable expert system are saved.

Use Case Name
ConsultExpertSystem

Participating Actor
SystemUser

Entry Condition
SystemUser has expert system open and wants to consult it.

Flow
1. Expert system presents question to expert system user.

2. SystemUser responds to question.

3. If expert system has insufficient information to produce solution, go to 1.

Exit Condition
Expert system presents solution.

Use Case Name
Why

Participation Actor
SystemUser

Entry Condition
SystemUser is consulting the expert system and wants to know the reason why the question was asked

Flow
1. SystemUser selects the why functionality

Exit Condition
Expert system presents list of rules that lead to question being asked or states that question was required for initial information gathering

3.4.2 Object Model

(UML class diagram describing the objects, attributes, relationships, and constraints inherent in the system and indicate objects that must be made persistent.)

3.4.3 Dynamic Model

(UML state diagrams that describe in detail the state transitions for certain objects, UML activity diagrams that describe in more detail the processing within
certain use cases, and/or traditional data flow diagrams. (The contents of this section is very dependent on the system being developed.))

3.4.4 Data Dictionary

Listing of all identifiers used in the system models along with their complete and precise meaning.

Appendices

Any additional detail related to system requirements, e.g., the specification of the interface to an external system in which the proposed system must interact.

