

RAFS - Robot Aided Feng Shui

Project Design Document (DD)

Peter Motykowski-|-Bradley White-|-J.D. Pohlman-|-Matt Allen

Table of Contents

1. General Description ... 2

1.1 Purpose of the Project...2

1.2 Scope of the Software ...2

1.3 Assumptions, Constraints, and Risks..2

1.4 Definitions, Acronyms, and Abbreviations..2

1.5 References..2

1.6 Overview of the Document..2

2. Project Standards and Conventions... 2

2.1 Design Standards...2

2.2 Documentation Standards ..2

2.3 Naming Conventions ...2

2.4 Programming Standards ...2

3. Software Development and Visualization Tools........................ 2

3.1 tacti.cs.siue.edu ...2

3.2 Saphira 8.1..2

3.3 GCC / Make / PuTTy ...2

3.4 CodeWarrior ...2

3.5 C*Forge ...2

3.6 Microsoft Visual Studio C++ 6.0..2

3.7 VNC – Virtual Network Computing / Cygwin..2

3.8 Microsoft Visio 2002 ..2

3.9 AutoCAD 2002 ..2

3.10 Rational Rose ...2

3.11 Microsoft Office XP ..2

4. Design Details... 2

4.1 Feature Relationships..2

4.2 Diagrams...2

4.3 Class and Object Design ...2

4.4 Networking and Database Information...2

4.5 Lifecycle Model ..2

4.6 Test Plan ...2

4.7 Project Prototype ...2

5. Attachments.. 2

11/6/2002 Project Design Document - Version 3.2 Page 1 of 78

1. General Description

1.1 Purpose of the Project

The RAFS project will consist of a hardware/software solution to a
problem set of physical objects. In our case, these objects are rolling
chairs that are often scattered around the SIUE senior project laboratory
(EB2029). Our solution will be comprised of one or more robots controlled
by custom software developed by the RAFS team members. Ideally, the
robot will be able to identify unorganized chair placement and move the
chairs to open computer desks. While doing this, the robot may be
required to deal with unexpected objects or situations. These exceptional
conditions will be discussed later in this document.

1.2 Scope of the Software

Project Scope

The RAFS project is primarily concerned with the core functions of
object recognition and placement. Although we aim to handle as many
exceptional conditions as possible, only a limited subset of error states
will earn our attention.

In Scope

Within this section we will define goals, deliverables and progress
milestones. We plan to structure our work in such a way that each
milestone will yield a fully functional, and to some degree, tested,
software module.

Goals

• Recognizing an object and being able to determine whether
or not it is a chair or desk.

• Maneuvering in an area and being able to avoid objects.
• Identifying an empty desk.
• Enabling the robot to grasp and move chairs.

11/6/2002 Project Design Document - Version 3.2 Page 2 of 78

Deliverables

Each goal will produce a completely functional standalone
software module. Using this approach will ensure quality-tested
platforms to begin each next phase of development. Using this
development approach will help expand the SIUE repository of
example robotics source code.

Exceptional Conditions

Inappropriate behavior can result when the robot encounters
objects and/or situations with which it is not programmed to
deal. We plan to tend to certain situations, which may interfere
within an ordinary operation cycle. The objects/situations
causing this behavior can be sorted into two categories,
dynamic and static objects/situations.

Dynamic Objects/Situations

Objects that fall into this category are those that do not
belong to the original layout of EB2029. The room is
equipped with collapsing wall dividers and rolling tables. At
any time these objects may be placed in various locations
throughout the room. As a result, we may add facilities to
determine room layout during each operation cycle.
Several objects may not necessarily move, however, they
may produce a situation the robot needs to deal with.
Loose cabling or carelessly placed objects, i.e., temporarily
stored boxes, could become obstacles for the robot.
Facilities must be in place to avoid such objects and/or
correct situations caused by them, i.e., wheel caught in
wires. In worst case scenarios it would be appropriate to
power down the robot and terminate the operation cycle.

Static Objects/Situations

Objects that fall into this category are those that belong to
the original layout of EB2029. The room is equipped with
several computer stations that we will refer to as desks.
Supporting the ceiling are poles that reach from floor to

11/6/2002 Project Design Document - Version 3.2 Page 3 of 78

ceiling. Two large tables reside in the center of the room.
Although these tables may be moved, we will assume that
they have been returned to their proper places. We make
this assumption based on the markings on the floor that
indicate the appropriate placement of the tables. It is fairly
clear that the tables belong in this position and should not
be moved for any extended period of time. At certain parts
of the floor are small mound-like wire covers. The robot
alone may roll over the covers with ease, but there may be
a concern while the robot is moving a chair. We will
determine at a later time if the covers are something that
must be avoided. If confronted with an unrecognizable
object, the robot will either avoid the object or enter the idle
state until assisted by the user.

Random Objects/Situations

In some instances the robot may encounter foreign matter
while performing an ordinary operation cycle. In the event
that these objects/situations are unpredictable, we must not
be responsible for the behavior of the robot. An example of
this would be water or some other foreign matter either on
the floor or in the path of the robot. These conditions are
beyond the scope of arbitrary collision detection.

Environment Issues

There exist several variables within EB2029 that may play
a role in the ordinary operation cycle. Room lighting may
influence the accuracy of sonar and/or laser guided object
recognition elements. In addition, room temperature may
affect robot operation, although this case is much less
likely. We must also consider the possibility of the floor
being waxed on occasion. This could pose a problem with
the steering and wheel elements.

 Out of Scope

To precisely define what we are trying to achieve we must
sometimes define what we are not trying to achieve.

11/6/2002 Project Design Document - Version 3.2 Page 4 of 78

Exceptional Conditions

While it would be ideal to accommodate all exceptional
conditions, it would be overly optimistic to strive to do so. We
will only be able to handle conditions that are of the highest
priority. High priority situations are those in which the robot,
SIUE equipment, and/or spectators are in immediate danger.

1.3 Assumptions, Constraints, and Risks

Assumptions

• The project will be performed in the Engineering Building (EB2029).
• The door to EB2029 will be closed during the ordinary operational

cycle. This assumption is in agreement with the Department of
Engineering’s policy regarding the secure status of this room.

• There will be a limited amount of people in the room during the
ordinary operation cycle. We do not anticipate more than Dr. White,
the RAFS group members and a few spectators.

• The square tables in the middle of the room will remain stationary.
• The computer desks will remain stationary.

Constraints

• The project will be performed in the Engineering Building (EB2029).
• We are limited to robots owned by SIUE. This may include one or

both (the acquisition of a third robot is currently pending).

Risks

The project may be too complicated to be successfully completed in the
time allotted. However, there appears to be ample time (in the
neighborhood of 10 months) indicating this risk may not be a significant
issue if consistent progress is made. (Risk assessment: HIGH)

The project may not be able to achieve all goals as set out by Dr. White
or those stated in the PDD. Although the PDD process provides the
team an opportunity to identify which goals are achievable, necessary,
or unattainable. (Risk assessment: MEDIUM)

11/6/2002 Project Design Document - Version 3.2 Page 5 of 78

The robot may pose a damage risk to property in the room such as
tables, computers, printers, chairs, or walls. However, the robots have
an emergency "OFF" switch. In the event that the robots damage SIUE
property, they could always be quickly powered down. The robots also
have image processing and object detection capabilities that could be
used to avoid damage to objects in the room. (Risk assessment:
MEDIUM)

The robot may present a physical threat to people who are in the room
at the time of robot operation. On the other hand, the robot will most
likely be used after hours, to put chairs back when students have left the
room. When the robot is run under these conditions, only the team
members and faculty may be present. Also, most operators could get
out of the danger’s path long before any injury could happen to him or
her. Finally, the image processing and object recognition capabilities of
the robot could be used in this instance as well. (Risk assessment:
LOW)

The robots are shared resources in the School of Engineering and this
brings up several issues. First, currently any student in the School of
Engineering with an electrical engineering account can access the robot.
Second, the robot can be controlled via a LAN/WAN and is susceptible
to viruses and other problems that plague networked computers.
However, since this risk was initially realized, Dr. Weinberg has been
gracious in allocating the smaller robot specifically for our group’s senior
project use. (Risk assessment: LOW)

1.4 Definitions, Acronyms, and Abbreviations

• Robot – The use of this word throughout the document will serve the
same purpose as the notation robot(s). This distinction is made to
avoid awkward subject verb agreement in sentences. We are unclear
at this time whether the project will include one or more robots;
therefore this redefinition is absolutely necessary.

• Ordinary operation cycle – This term shall represent the following
cycle of operation.

1. Robot executes startup procedure, default chair arrangement
procedure selected.

2. Robot identifies misplaced chairs and empty desks.
3. Robot places each chair, one at a time, into empty desks.
4. Robot executes shutdown procedure.

• Desk - An empty or chair occupied computer station

11/6/2002 Project Design Document - Version 3.2 Page 6 of 78

• IDE – Integrated Development Environment
• GNU – GNU is Not UNIX, open source development project
• CVS – Concurrent Version System
• GPL – GNU Public License
• HTML – Hyper-Text Markup Language
• Cygwin – A UNIX API system implementation for Win32.

http://cygwin.com
• Pioneer/Frontier2 – The smaller of the two robots
• XWindows – A Window-like GUI environment for UNIX platforms
• XFree86 – A free XWindow implementation that will be used in our

project
• XDMCP – XWindow Display Manager Control Protocol
• R&D – Research and Development
• PHP – PHP Hypertext Preprocessor
• UNIX/Linux – These terms are used interchangeably throughout this

document, dealing with the platform we will be working with
• NIS – Network Information Systems
• Win32 – A term use to describe the Microsoft Windows operating

system environment
• SOENT – School Of Engineering Windows NT network
• SSH – Secure Shell login facility
• RGB – A set of integer values describing a color
• PDD – Project Definition Document
• PPD – Project Plan Document
• DD – Project Design Document

1.5 References

• The NORRT project team
• http://robots.activemedia.com
• Dr. White
• Dr. Weinberg
• Dr. Umbaugh

1.6 Overview of the Document

The intention of this document is to communicate our final design
decisions to our customer, Dr. William White. We will be discussing our
entire design plan along with other relevant issues. The software tools
being used to develop this project will be discussed in detail along with

11/6/2002 Project Design Document - Version 3.2 Page 7 of 78

refinements to our schedule and test plan. We will address module-to-
module communication and classes and objects as well.

We will also provide a divided relationship area that is broken up into
three parts: a committed section, a casual section, and a fantasy
section. The committed section deals with what requirements our
project has to meet to complete the project. Missing any of these
requirements negatively affect the course grade. The casual section is
what our team hopes to get done. Realistically speaking, we will not
accomplish all of the points in the casual section. We will attempt all of
them, but our realistic goal is to get at least half of them done. The third
category is our “wish list” for this project. We will not even attempt to do
these points. They deal with what we wish we could do with the robot
for this project. These are nice ideas, but are too complicated to finish in
the time allotted for our project.

2. Project Standards and Conventions

2.1 Design Standards

Code will be broken up into different modules. Each module will consist
of a header with the programmer of the module, the date, parameters,
version number, and a brief description of what the module does.
Modules will be broken up into four main categories: movement, chair
handling, object recognition, and error logging. The module graph is in
the attachments section at the end of this document.
The modules will be designed as follows:

The Saphira API is the very top level of our project. It will be the
main interaction for the user, or where the user can call functions (or
modules). The only module that the user will be aware of is the
Arrange Room module. This module will take care of organizing
what functions to call when. It is the main function in our program.
It will call Object Recognition, Chair Handling, and Movement.

Object Recognition will have different sub-modules for the laser,
sonar, and camera. Each of these sub-modules will call some sort
of routine for a chair, desk, and an “other” object. The other is what
the robot will do with any other type of object, which is not
recognized as a chair or a desk. A module, Error Logging, will
monitor each of these routines.

The Chair Handling module will call two sub-modules, one dealing
with gripping a chair and the other moving with a chair. The sub-

11/6/2002 Project Design Document - Version 3.2 Page 8 of 78

module that deals with moving a chair will also be used in the
Movement module. Error Logging will also monitor these sub-
modules as well.

Movement is going to be a major part of this project, so we decided
to make it a module. The Movement module has two sub-modules,
moving with a chair and moving without a chair. Moving with a chair
has two routines - one that makes sure the collision detection is off,
and the other that deals with a chair when it is at an empty desk.
Moving without a chair has three routines – one that makes sure the
collision detection is on, one that finds a chair, and one that finds an
empty desk. The Error Logging module again monitors all of the
routines.

2.2 Documentation Standards

The group leader will assign sections of the documents for the group to
work on. He will base his assignments on areas of interest expressed
by each group member. If a group member expresses no interest, some
remaining sections will be assigned. When a group member finishes his
sections, he will post them on the ftp site, following this naming format:

pdd_Document_1.3.1.doc

Where “pdd” stands for Project Definition Document (or ppd – Project
Plan Document or dd – Project Design Document). Documents are
started at version 1.0 and the minor section is incremented when
sections are completed. If a release is made with grammar and spelling
corrections and no additional sections, a release field is added, i.e.,
1.3.1.

Documents will be stored on the ftp site, ftp://csfs2.siue.edu/sp/s02g2.
A directory will be created for each sub-area of the project. For
example, a folder is made for each type of document, using the names
pdd/, ppd/, and dd/, respectively. As progress is made on each
document, older versions of work products will be placed in an archive
folder, i.e., /pdd/archives.

Minutes will be taken and kept up-to-date by the Lead Documenter. The
Design Document will have the most current information about the
project. The older documents will show how the project has progressed,
with changes being updated from one older document to a newer one.
For example, one thing that has changed is the definition section. Many
more definitions have been added to the Design Document as opposed
to the Project Definition Document.

11/6/2002 Project Design Document - Version 3.2 Page 9 of 78

Not much of a user manual is required for our project. It will include the
procedure for operating the robot with respect to putting the chairs back.
It will explain how to turn the robot on, log into the robot, and how to run
the appropriate programs to get the task done that the user wants to do.

Several tools will be used to verify and validate our projects. First, Dr.
White will give us valuable feedback in regards to our project’s progress.
The RAFS team in general will be verifying everything is correct as the
work progresses. The Lead Documenter will check over the segments
while he is combining everything to one document, and if time permits,
someone will check over the final document to make final revisions
before the document is turned in.

2.3 Naming Conventions

In addition to document file naming standards, we have introduced file
naming standards for source code files as well. Thus far we have been
using Hungarian naming conventions to organize our source code files.
This method uses variations in the capitalization of letters within a
filename to provide readability. An example of this is the directory
structure and filename from our project prototype. In this example all
classes begin with the name of our project, RAFS. In the future, to
ensure short names, this may be removed.

./rafsGripper

./rafsGripper/rafsGripperClose

./rafsGripper/rafsGripperClose/rafsGripperClose.cpp

./rafsGripper/rafsGripperOpen

./rafsGripper/rafsGripperOpen/rafsGripperOpen.cpp

./rafsGripper/rafsGripperRaiseLower

./rafsGripper/rafsGripperRaiseLower/rafsGripperRaiseLower.cpp

./rafsSquare

./rafsSquare/rafsSquareClockWise

./rafsSquare/rafsSquareClockWise/rafsSquareClockWise.cpp

./rafsSquare/rafsSquareCounterClockWise

11/6/2002 Project Design Document - Version 3.2 Page 10 of 78

./rafsSquare/rafsSquareCounterClockWise/rafsSquareCounterClockWise.cpp

2.4 Programming Standards

Coding Standards are important for many reasons. First, if there is
some set of standards, all developers will feel as if they are on the same
level. The standard for this project was developed using the wide and
varied experience of the RAFS team and also by the international
development community as a whole. These standards were developed
with the following goals in mind:

• Developers can look at any code and surmise what is going on.
• Developers new to the code can get up to speed quickly.
• Developers new to the API need not develop their own coding style.
• Developers new to the API will not make the same mistakes over

and over again as previous development teams have.
• Programmers make fewer mistakes in a consistent environment.

This section of the Design Document is our coding standard for writing
C++ code to use with the Saphira 8.1 API for the ActivMedia robot. The
range of this section is devoted to coding style, not to code function.

Background

The various experiences of our team, both in and out of the classroom
and industry, have developed this standard in an attempt to make this
latest project progress smoothly. Are these standards necessary or
vital to the fruition of the project? Probably not, but they are meant to
help and as developers we will graciously accept help when provided to
us. When a standard is composed in a logical matter using reasonable
assessments it can also be overbearing or technically lacking. Keep in
mind that this project is a team effort, therefore it was easier to develop
this standard as a team.

Introduction

This section of the document does not address functional organization.
While we have tried to be clear, concise, and complete as possible, this
standard cannot be imposed on all situations or circumstances.

The standards listed in this section of the document pertain to this
project only. However, we welcome, invite, and encourage other

11/6/2002 Project Design Document - Version 3.2 Page 11 of 78

organization to use our coding standard for their software development
projects. We do ask though that notification of the members of the
RAFS group and the Southern Illinois University Edwardsville School of
Engineering of their intentions to use this section of the design
document.

Standards Enforcement

The RAFS team members are great believers in the “Honor System”.
There is no committee on enforcement of the coding standard, only peer
reviews of one another’s code and the help of other teammates in
debugging code modules. This coding system is encouraged for the
latter of these two reasons.

Names

Since names are the heart and soul of development, names that are
clear, unique, and descriptive are of great value to the development
team and to future generations of developers who will be upgrading,
updating, and studying our code.

Class Names

Names of classes should be names of things that already exist (both in
the computer system and the real world). If we are writing a class to
describe desks, we should name the class “Desk”. If we are writing a
class for error we should name the class “Error”. Compound words and
names containing more than three words will be avoided at all costs.

Source Code File Naming Conventions

First, as with most computer files, files require a name, dot separator,
and suffix.
• All Source code files will end with a “cpp” or “c” suffix
• All Header files will end with an “h” suffix
• All files will use a dot separator between name and suffix “*.h” or

“*.cpp”

11/6/2002 Project Design Document - Version 3.2 Page 12 of 78

Class Conventions

As naming conventions go, the name of all source and header files are
left to the discretion of the developers as long as they meet the following
requirements:

All file names must be contiguous and contain no spaces.

Allowed:

“Class.h”

Not-Allowed:
 “My class.h”

All classes must be singular nouns (objects) that begin with a capital
letter

Allowed:

 “Desk”

Not-Allowed:
“desks”

All methods for inserting data into a class object will be named with the
prefix “set” and the next word will be the name of the attribute(s) whose
value is being changed. The name of the attribute being changed must
begin with a capital letter. No underscores will be permitted in naming
class input functions. All class input functions will be of type void and all
parameters passed into the function will be passed by value.

Allowed:

void setClientName(string FirstName, string Last Name);

Not-Allowed:
bool Send_Client_Name(string &first_name,

 string &last_name);

All methods for retrieving data from a class object will be named with the
prefix “get” and the next word will be the name of the attribute(s) whose
value is being retrieved. The name of the attribute being retrieved must
begin with a capital letter. No underscores will be permitted in naming
class output functions. All class input functions will be of type void and
all parameters passed into the function will be passed by reference. The
parameters for these functions will be the buffers for getting things out of
classes.

11/6/2002 Project Design Document - Version 3.2 Page 13 of 78

Allowed:
 void getClientName(string &FirstName,

 string &Last Name);

Not-Allowed:
 bool Gimme_Client_Name(string first_name,

 string last_name);

Class attributes of standard types will be named by capitalized nouns,
with the exception of Boolean types which will be named an adjective or
verb ending in the prefix “ed”.

Allowed:

string Name
 int Number
 float Average
 bool calculated
 bool measured

Not-Allowed:
string myName

 int myNumber
 float classAverage
 bool Am_I_measured
 bool Am_I_calculated

Documentation of classes will be handled using the following template
for C++ source file coding.

// class: <class name>
// description: <a description of what this class is and what it is used
// for>
// attributes:
// <attribute 1> - <description>
// <attribute 2> - <description>
// <attribute 3> - <description>
// <attribute 4> - <description>

General Coding Standards

Variables

All variables (except of type bool) will be nouns named with capital
letters. Boolean variables will be adjectives or verbs named the suffix
“ed” except where they make incorrect grammatical sense.

11/6/2002 Project Design Document - Version 3.2 Page 14 of 78

Underscores will be used only to separate text portions of the variable
name from numerical portions of the variable name.

 Allowed:

bool Named_123
 bool Placed_999

 Not-Allowed:

bool Founded123
 bool isItName123

Declarations

One declaration per line is to be used and followed by a short inline
comment to document its significance and use. This convention is to be
followed even if variables are of the same type.

 Allowed:

int Sum; //Sum of all the incoming data.
 int Input; //The current input from the loop.
 char FirstName[80]; //Buffer for user’s first name.

char LastName[80]; //Buffer for user’s last name.

 Not-Allowed:

int Mikes_Sum; //Sum for incoming data
 char Array_1[80], Array_1[80];
 float Mikes_floater_variable; //float variable for stuff

Functions & Function Prototypes

Functions and Prototypes will limit arguments to one argument per line
followed with a short inline documentation. This convention makes code
more readable and easier to follow. Functions will be named with a
lowercase verb followed by nouns named with capital letters. Passing
by value is encouraged, but the writers of this document understand that
sometimes passing by reference is necessary. Try to limit these
occasions.

 Allowed:

float returnAverage(float Table[], //Data to find the
//average

 int NumberOfItems //The number of items in
//the table

 bool RoundOff); //decides if returned

11/6/2002 Project Design Document - Version 3.2 Page 15 of 78

//value will be rounded
//to the nearest int.

 Not-Allowed:

float AverageData(float mytable[],
 int number, //number of items in

//table
 bool Round_Yes_Or_no); //round off

Documentation and in-line comments

Any significant operation or declaration will require a brief inline
comment. Insignificant operations not necessary of documentation are
those such as updating a pointer to the next character in a string or
documentation of the pre-increment or post-increment operators. When
in doubt if an operation is significant, ask yourself a simple question.
“Would a first year Computer Science Undergraduate understand this?”
If the answer is yes, then nothing more is necessary. Otherwise, more
documentation is needed.

Necessary: int Total; //Sum total of all values in the set

Not-Necessary: p++ //increment p for the next iteration

//of the loop

The following function documentation shall be used as templates for all
functions in this project.

C++ Function Documentation

// function name: <name goes here>
// parameters-in: <list them one per line with a short description>
// parameters-out: <list them one per line with a short description>
// parameters-in/out: <list them one per line with a short description>
// returns: <what value does the function return or void>
// description of function: <A full and complete description of what the
// function does and how it doe it will go in this field>
// notes: <any other information a developer finds helpful should go in
// here (e.g., “use this function only for floating point data”)>

11/6/2002 Project Design Document - Version 3.2 Page 16 of 78

C Function Documentation

/* function name: <name goes here>
/* parameters-in: <list them one per line with a short description>
/* parameters-out: <list them one per line with a short description>
/* parameters-in/out: <list them one per line with a short description>
/* returns: <what value does the function return or void>
/* description of function: A full and complete description of what the
/* function does and how it doe it will go in this field>
/* notes: <any other information a developer finds helpful should go in
/* here (e.g. “use this function only for floating point data”)>
*/

Note that this is the standard for documenting functions and is different
from how documentation for functions that access classes will be
handled. An example of documentation on how functions that access
classes are handled is shown in the class documentation section above.

3. Software Development and Visualization Tools

3.1 tacti.cs.siue.edu

This machine is going to be used to test Linux compatibility of written
C++ code. For the sake of convenience, code may be written on a
Windows machine using Visual Studio C++ and the Pioneer2 robot
simulator. This machine can be accessed via VNC for remote desktop
access to the GUI tools packaged with Saphira 8.1. This testbed for
code will be an intermediate development point as opposed to authoring
code directly on the robot. The decision to do this is based on the
recent instability of the robots’ onboard computers. In the event that the
robot malfunctions, we will not have to worry about potential data loss.
In addition tools such as C*Forge and CodeWarrior will be installed for
any advanced programming that may take place on this machine.

3.2 Saphira 8.1

This rich sophisticated robotics API will be used for most, if not our
entire project. This new release contains a full underlying
implementation of ARIA and a richly developed hierarchical class
structure. This version of the API was used to develop the feasibility
prototype and facilitated the rapid programming approach that was
necessary.

11/6/2002 Project Design Document - Version 3.2 Page 17 of 78

Graphical User Interface

Instead of developing our own user interface, we are going to rely on the
provided Saphira GUI. This feature-rich environment provides us with
all of the needed functionality, along with several extra options that may
prove useful. As the Saphira GUI starts, it loads user libraries that can
be used within the environment.

Library Files

Each functional module of our program will be contained within an ELF
32-bit LSB shared object file. The framework for composing such an
object will be reviewed in the detailed description of our prototype code.

Colbert: A Language for Reactive Control In Saphira

This language will be used to some extent when automating the loading
of library modules. Since our program will consist of several library

11/6/2002 Project Design Document - Version 3.2 Page 18 of 78

modules, we will need to ensure all are loaded and available upon
starting the GUI.

// Startup functions loaded after system startup routines
// file: myStartup.act
// These are the libraries used for out prototype
loadlib ./lib/rafsGripperOpen; //See output below
loadlib ./lib/rafsGripperClose;
loadlib ./lib/rafsGripperRaiseLower;
loadlib ./lib/rafsSquareCounterClockWise;
loadlib ./lib/rafsSquareClockWise;
sfMessage("Rafs functions loaded");

In addition to automated startup use, Colbert can be used within the
interaction window of the Saphira GUI. This window could be used to
interact with the program at any point during its operation.

11/6/2002 Project Design Document - Version 3.2 Page 19 of 78

Interaction Window

This window is used as both a means of input and output. Any code
using the sfMessage() function will be displayed within this window.
This window will also be used to manually load or invoke action
functions during program execution.

To a certain extent we will use the Colbert language to write batch
scripts to execute a series of library functions in a certain sequence.
The following script is an example that launches the appropriate
functions to complete a counter-clockwise traversal of a 6-foot square
with a chair.

// This file starts the prototype actions in the appropriate order
// file: prototype.act
act prototype()
{

start RafsGripperOpen();
start RafsGripperRaiseLower(0,0); //Lower gripper to lowest

//point
start RafsGripperRaiseLower(1,135); //Raise gripper to

11/6/2002 Project Design Document - Version 3.2 Page 20 of 78

 //appropriate level
//manually set chair in gripper now
start RafsGripperClose();
start RafsGripperRaiseLower(1,35); //Slightly lift gripped

//wheel upward
start RafsSquareCounterClockWise(1829);

}

This output lacks messages that would have been returned from the
gripper subsystem. This is due to the fact that it was run on the Pioneer
robot simulator. This simulator does not have support for external
sensory devices by default; therefore, it ignores functions that attempt to
access them. As we progress with our use of the simulator we will be
able to utilize gripper and laser emulators that return data similar to that
expected from physical devices.

11/6/2002 Project Design Document - Version 3.2 Page 21 of 78

The Saphira 8.1 API and GUI are available for both Linux and Win32
operation system platforms. This being the case, we can develop a
significant amount of code in the Win32 environment, therefore being
able to utilize the Visual Studio IDE. As code is being developed, it
could be periodically tested on a Linux Saphira configuration to ensure
code can be compiled with the GNU C++ compiler. Although it would be
ideal to develop code in the Linux environment at all times, we may use
the Win32 option for advanced debugging and testing.

Pioneer Robot Simulator

This simulator is used to imitate a connection to an ActivMedia Pioneer
robot. The simulator will be used in both the Linux and Win32
environment when development is not taking place on the actual robot.
This will be useful for development tasks that do not require the robot to
complete. Also, it will be handy when many team members would like to
work on development at the same time or when using off-campus
computers.

11/6/2002 Project Design Document - Version 3.2 Page 22 of 78

3.3 GCC / Make / PuTTy

To an extent we will be developing code in the console Linux
environment when need be. This means of development is considered
rather unattractive due to the lack of visual tools to facilitate rapid
development. This method will only be used when making small
changes to source code or to quickly rebuild a library without having to
launch an integrated development environment. We intend on using this
method as little as possible to eliminate the chances of human error.
Leaving workspace and file management up to the integrated
development environment would ensure the integrity of the files in our
code base.

GCC – This is the C++ compiler that will be used when building code in
the Linux environment.

Make – This is the automated compilation tool that will be used when
building code in the Linux environment

PuTTy – This is the Secure Shell remote access tool that will be used to
access any Linux based systems used during this project.

11/6/2002 Project Design Document - Version 3.2 Page 23 of 78

3.4 CodeWarrior

We cannot underestimate the value of a visual development
environment. While it would be staying true to the UNIX purist style of
development, text editors and command line compilers will not suit our
development time schedule. We have referenced an article published
by Linux Magazine to help us narrow down our choices of IDEs
(http://www.linux-mag.com/2001-04/IDE_01.html). From what the article
says, CodeWarrior will be a top choice for our project. It has been
around for several years and is part of the curriculum at many
universities. We have been unable to obtain an evaluation copy for
preview purposes. However, the screenshots and reviews provide
adequate information regarding the software suite.

11/6/2002 Project Design Document - Version 3.2 Page 24 of 78

3.5 C*Forge

Another top choice is C*Forge by CodeForge. This IDE seems to be
more of a front end to the common set of Linux development tools. This
suite was given rave reviews and is said to be an extremely stable
development environment. It possesses features such as a visual
debugger, MakeFile generator and automated CVS support. At this time
in our project it is safe to say we would like to use this environment.
Although it carries a higher price tag than CodeWarrior, the additional
features and stability would be invaluable to us.

11/6/2002 Project Design Document - Version 3.2 Page 25 of 78

3.6 Microsoft Visual Studio C++ 6.0

We will be utilizing this environment when working with the Saphira 8.1
GUI and simulator on the Win32 platform. As much development as
possible will take place using this integrated development environment
due to the wealth of debugging tools included. Also, this will aid team
members who lack skills needed to be effective developers in the Linux
environment. The Visual Studio compiler will produce Win32 dynamic
link libraries that can only be used in the Win32 environment. All source
code files will need to be rebuilt in the Linux environment to be usable
on the robot’s onboard personal computer.

The several different development environments being used are going to
introduce issues with version control. We will therefore use a version
control system to automate the administration of source code files.
Candidate software packages are CVS, RCS or other freely distributed
source code control systems.

11/6/2002 Project Design Document - Version 3.2 Page 26 of 78

3.7 VNC – Virtual Network Computing / Cygwin

This tool will be used to access remote Linux desktop sessions from a
Win32 client workstation. Again this tool will aid team members in
utilizing the Linux computers involved in this project.

11/6/2002 Project Design Document - Version 3.2 Page 27 of 78

3.8 Microsoft Visio 2002

One of the visibility tools the RAFS team will use for the project is
Microsoft Visio. Visio is an application that is now owned and
maintained by Microsoft. It is part of the Microsoft Office Suite and is
used for diagramming and making other visual presentation material.

There are several features and attributes of Visio that can be very
helpful to our group in completing our senior project.

First, Visio can be used to make simple block diagrams. This will make
it easy to quickly come up with charts for our research and planning.

Second, Visio can be used to design and layout floor plans. This feature
will be helpful in quickly documenting the room in which we need to
place chairs at their proper station. This feature will also come in handy
assuming future growth of our software and allowing the software to be
run in rooms other than the senior project room (EB2029).

11/6/2002 Project Design Document - Version 3.2 Page 28 of 78

Third, Visio has several business charting features that will allow us to
quickly design and print flow charts and document processes (including
pseudo-code and algorithms).

Fourth, Visio is designed to work with standard UML notation to quickly
and efficiently build Sequence Diagrams, Class Relationships, and State
Charts.

Fifth is Visio’s short learning curve. It uses a simple drag and drop
interface unlike more complex software packages that use complicated
“wizards” (such as Microsoft’s Project) or dozens-to-hundreds of
command line instructions (such as Autodesk’s AutoCAD). It also starts
up and is ready to operate quickly after launching the program (unlike
Rational Rose).

After considering all of Visio’s features, capabilities, and short learning
curve, we have decided that it would be one of the best software
applications to use for the Robot Aided Feng Shui project.

3.9 AutoCAD 2002

11/6/2002 Project Design Document - Version 3.2 Page 29 of 78

Another Visibility tool that we would like to use for our project is
Autodesk’s AutoCAD. While AutoCAD does not have the short learning
curve of Visio or some other graphical development packages, one of
our group members is very experienced with it (he is considered an
expert) and all computers in the School of Engineering have copies of
the latest version already installed.

The first of AutoCAD’s features is the fact that it uses vector-based
graphics. All objects in an AutoCAD file exist as points and lines in
space with Cartesian coordinates. This would be very helpful for
accurately and precisely documenting a room in which we may have to
know the location of every nook, cranny, corner, or major object is. As
an added incentive, the Engineering Building was designed using
AutoCAD, so any of the rooms that the group may need to document are
probably already done.

A second feature of AutoCAD that would be helpful to our group is the
fact that it is easy to export to other formats - such as jpg, bmp, and
wma. These formats are more commonly used on web pages,
documents, and Microsoft Windows applications. Having this tool would
allow us to freely export to a more common format, since AutoCAD
drawings can be viewed on other computers (on campus and off)
without any hassle or worry that some unscrupulous person may try to
edit or change the files.

A third feature, the object snap feature, will be beneficial. This feature
will come in handy when we need to locate a point that is not easily
described or known. Say, for example, on a coordinate plane the
midpoint of an arc that is 35 degrees wide. However, with the object
snap feature of AutoCAD we can “snap to” that point to find out where it
is exactly in the room and program our robot accordingly.

For these reasons we think that AutoCAD would be an excellent tool for
documenting and reading documents that relate to the floor plans of the
Engineering Building.

11/6/2002 Project Design Document - Version 3.2 Page 30 of 78

3.10 Rational Rose

The Rational Rose software program is a frequently used application
throughout the software development industry. Rational Rose is a
“model driven development tool” that uses UML (Unified Modeling
Language) to make entity relationship diagrams, class diagrams, and
also sequence diagrams.

While this package may not be used as much as some of the other
software packages used in this document, three quarters of the team
have some experience with it and many of the instructors on campus
have experience with Rational Rose as well.

Rational Rose has several points that could be very helpful to our
project. The first is that it can be used to generate sequence diagrams.
We currently are using Visio for this task. The only problem with Visio is
that it is not installed on any university computers. It is only installed on
one team member’s home computer. We are planning to purchase a
legitimate copy to install on university computers.

Rose would also bring its ability to quickly make entity relationship
diagrams to our project. We are also currently using Visio but as we had
mentioned in the previous point, it is only available to us on a limited

11/6/2002 Project Design Document - Version 3.2 Page 31 of 78

basis. Therefore, we will be using Rose in addition to Visio for doing our
entity relationship diagrams.

3.11 Microsoft Office XP

For general documentation on the x86 Windows Platform we will be
using (and have been using up to every point thus far) Microsoft Word
and the rest of the Microsoft Office XP applications. The XP suite has
allowed us to integrate text with jpg, gif, and bmp files to make attractive
and functional documents.

4. Design Details

4.1 Feature Relationships

Committed Relationship

Omitting these features in the final implementation signifies that the
project is incomplete and/or unsatisfactory. All of these features are fully
designed and assigned to specific team members.

11/6/2002 Project Design Document - Version 3.2 Page 32 of 78

Casual Relationship

It’s not unrealistic to expect most of these features to be included in the
final implementation, but omitting some of them is considered
acceptable, as long as the code is implemented in a fashion that lends
itself to straightforward expansion to include the omitted features.
Prioritized features in this category are fully designed and assigned to
specific team members, while non-prioritized features are loosely
designed and unassigned.

Fantasy Relationship

None of these features can realistically be expected to appear in the
final implementation, although all of them are desirable and serious
efforts will be made to ensure that the actual implementation could
easily be expanded to include these features. All of these features are
loosely designed and unassigned to any particular team member.

Committed Relationships

• We will locate a chair in the room by attaching many color-coded

stickers on the chairs. The robot will use its camera to recognize
certain colors to be linked to the object as being a chair. The only
chairs that will be marked are going to be the ones not already at a
desk. We will not have to deal with a chair being at a desk, since that
is the goal state of each chair. The robot will just ignore those chairs,
which will simply be an object, as opposed to a chair. We can put
stickers all over the chair (the front and back of the seat back, the post
at the bottom of the chair, each leg of the chair, etc.) to let the robot
know that object is a chair. This process will be done before the robot
is turned on and ready to operate. An early example of what this looks
like follows:

11/6/2002 Project Design Document - Version 3.2 Page 33 of 78

• We will locate a desk in the room in a somewhat different way. We will
hard code the desks prior to running the robot. This way, we will know
the position of all the desks. This will make it easier to find an empty
desk, by going directly to where a desk is, to see if it is empty. To
accomplish this, we will position stickers around the front of the desk,
along with the back of the desk, to identify an empty desk. These
stickers will be a different color than that on the chair. The robot will be
able to tell where the chair can be put into the desk because the
stickers will stop where the chair cannot move into the desk. For
example, the stickers will not be placed above where the computer is
under the desk. They will stop before that point. If a chair is at a desk
already, no stickers will be placed at the desk, thus making the robot
think the desk is empty. The process of placing the stickers on the
empty desks will be done before the robot is turned on and ready to
operate. An early example of what a desk would look like is this:

11/6/2002 Project Design Document - Version 3.2 Page 34 of 78

• We will take one of these chairs that the robot has recognized and

located, and put it into one of the empty desk slots. The robot will find
a desk in the room (one with stickers on it) and then search for a chair
that is not put up by a desk already. Once it finds a color-coded chair,
it will try to find the best path between the chair and the desk. Once
the path has been found, the robot will store it in memory. It will then
grab the chair and follow the path it has stored. It will end up putting
the chair into an empty color-coded desk.

• As far as gripping the chair goes, the robot will assume that the base of

the chair will be arranged in a certain way. We will make a leg of the
chair face directly north, so the robot will move to those coordinates
directly north of the robot to grab the leg. This eliminates the problem
of finding where the leg is, since the laser and sonar detect above this
point in the chair.

• We will assume that a chair is put up with the desk if it is within three

feet of the correct placement. In general, we will push the chair up to
the desk, and it is considered to be in the correct place when it stops.
This means the chair could be backward in the desk, or not facing it.
We will not deal with that in this area. An example of a bad placement,
but what would still work follows:

11/6/2002 Project Design Document - Version 3.2 Page 35 of 78

Casual Relationships

• We will locate a chair in the room by placing just one or two stickers on

the chair. The robot will use its camera to recognize certain colors to
be linked to the object as being a chair. The only chairs that will be
marked are going to be the ones not already at a desk. We will not
have to deal with a chair being at a desk, since that is the goal state of
each chair. The robot will just ignore those chairs, which will simply be
an object, as opposed to a chair. We will put one or two stickers on
the chair to let the robot know that object is a chair. We can place one
piece of paper around the bottom of the post of the chair. We might
also have to place a sticker on the end of one leg to get the robot to
recognize the end of the leg. This process will be done before the
robot is turned on and ready to operate. An early example of what this
looks like follows:

11/6/2002 Project Design Document - Version 3.2 Page 36 of 78

• We will locate a desk in the room by a somewhat different matter. We

will have the desks hard coded, and will still need a way to recognize
an empty desk. In order to do this, we will put one or two stickers on
the front of the desk, along with one larger one on the back of the
desk. These stickers will be a different color than those on the chair.
The robot will be able to tell where the chair can be put into the desk
because the stickers will stop where the chair cannot move into the
desk. We can put one sticker all the way to the far left of the desk,
along with the far right. The process of placing stickers will be done
before the robot is turned on and ready to operate. If a chair is at a
desk already, no stickers will be placed at the desk, thus making the
robot think the desk is just another object in the room, as opposed to a
desk. An early example of what an empty desk would look like is this:

11/6/2002 Project Design Document - Version 3.2 Page 37 of 78

• We will take one of these chairs that the robot has recognized and

located, and put it into one of the empty desk slots. The robot will find
a desk in the room (one with stickers on it) and then search for a chair
that is not put up by a desk already. Once it finds a color-coded chair,
it will try to find the best path between the chair and the desk. Once
the path has been found, the robot will store it in memory. It will then
grab the chair and follow the path it has stored. It will end up putting
the chair into an empty color-coded desk. It will repeat this procedure
for each chair, until either all the desks are full or no more chairs can
be found.

• As far as gripping the chair, the robot will be able to find the leg

arrangement in any position, as opposed to the legs needing to be
arranged in a certain state. It will use image processing to achieve this
goal state. We can take a picture of the orientation of the legs, and cut
out the rest of the picture (floors, etc). We can then have the robot
move to the proper place to grab the chair. This seems like it would
require a larger learning curve than some of the other objectives in this
category.

• The chair will be facing the desk in the correct position. We will not

assume the chair can be facing the opposite direction of the desk. It
will have to be facing the correct direction, with respect to the desk. An
example of this follows:

11/6/2002 Project Design Document - Version 3.2 Page 38 of 78

• We will log any errors that the robot comes across to a file. This
procedure will take care of things like when the robot runs into a wall
and stalls, or any other reason it would stall. If, for some reason, the
routines would come across any errors (e.g., the collision detection
cannot be turned off), the error would be logged to a file.

• We will hope to respond to a collision with a solid dynamic object in the

room in some sort or another. If the robot were to run into a table, for
instance, we would be required to take some sort of action so the robot
is able to correct itself.

Fantasy Relationships

• Responding to a collision with flexible objects (e.g., wires, cables) in

the room.

• The robot can be made to work in any room, as opposed to being

restricted in the Engineering Building, room 2029.

11/6/2002 Project Design Document - Version 3.2 Page 39 of 78

• The operator can simply turn on the robot and walk away. This means
the job can be left unattended while the robot puts chairs in the correct
places. It will deal with ALL problems on its own.

• The robot will deal with movement of objects in the room while it

operates. This would allow for people to walk around in the room, and
work while the robot is working.

• We will log errors to a database.

4.2 Diagrams

Generalized State Diagram (modified from PPD)

11/6/2002 Project Design Document - Version 3.2 Page 40 of 78

Detailed State Diagram

An elaboration of our state diagram from the Project Definition
Document is attached at the end of our document. With some small
changes made to the original, we descended into each state, defining
the internal characteristics encompassed by each state. As we refined
each state, we found a few corrections that needed to be made to the
original diagram. This iterative process aided in several design
decisions that will be briefed in the following documentation. To help
keep our diagram easy to follow we used a color coded numbering
system to indicate long connections that would otherwise span
complicate the connections between states. For example, the red circle
with the number 2 in it coming from the movement state is connected to
the red circle with the number 2 of the error state.

Idle State

• Initially this state will be invoked when the robot is powered up. The

robot has power controls for each of the separate computers
onboard the robot. When the robot is powered up, the internal robot-
controlling computer is powered up and the onboard personal
computer running Linux is powered up.

• When both systems are online and operational, the personal

computer running Linux can be connected to the internal robot-
controlling computer via the serial port (/dev/ttys0). This connection
can be established manually via the Saphira GUI or achieved
programmatically by executing a custom binary/script.

11/6/2002 Project Design Document - Version 3.2 Page 41 of 78

• After achieving a successful connection to the P2OS of the internal
robot-controlling computer, the robot is ready to receive commands.
At this point a script loading and executing several library modules
could be executed, taking the robot out of the idle state into the
movement state.

Movement State

• Upon entering this state the robot will begin seeking an object. An

object will become a candidate for object recognition if it seems to
have a high concentration of a color that the robot is seeking. The
accuracy and triggers of this seeking process will be determined
during implementation. If during the seeking the robot becomes
stalled, an error state will be invoked attempting to recover from the
error.

• When a candidate object is in sight, the robot will approach the

object attempting to position itself in such a way to begin object
recognition. At this point the movement state will invoke the object
recognition state passing to it the data collected on the object in
sight.

11/6/2002 Project Design Document - Version 3.2 Page 42 of 78

Object Recognition

• Upon entering the evaluation state, the robot will use the camera to
capture several images of the candidate object. A heuristic will be
used to analyze the image file searching for recognizable colors. If
the predetermined colors are detected to the satisfaction of the
heuristic, this object is recognized as a desk or a chair. If evaluation
fails the movement state will resume seeking another object.

• If the recognized object is a desk, the data collected from this object

will be inserted into the data structure used to maintain the collection
of desk objects. Continuing along, the robot will return to the
movement state seeking another object.

• If the recognized object is a chair, the data collected from this object

will be inserted into the data structure used to maintain the collection
of chair objects. If the collection of desks is not empty, the chair
movement state will be invoked using the current chair object as a
parameter.

11/6/2002 Project Design Document - Version 3.2 Page 43 of 78

Chair Movement

• Upon entering the chair movement state, a route evaluation routine

will be performed using the current chair object and the collection of
desk objects. This routine will return the optimal path from the
current chair object to a specific desk object. If no target desk can
be determined, the robot will enter the error state, eventually
returning to the movement state.

• When an efficient path is returned, the robot will traverse the path

without a chair to ensure the path is accurate and clear of obstacles.
Upon successful verification of the path, the robot will return to the
current chair object and prepare for chair placement.

• The robot will then grasp the chair and traverse the path that has

been verified by the previous step. If need be, the robot will pull the
chair to utilize sonar sensors located on the rear side of the robot.
These fine details will be discussed later in the document with
respect to design decisions. The resulting state will be a
successfully placed chair unless some exceptional condition occurs
along the way. With this chair placed, control will be returned to the
movement state and the robot will continue to seek objects.

11/6/2002 Project Design Document - Version 3.2 Page 44 of 78

Sequence of Events:

− Turn on robot, loading program
− Robot moves, seeking an empty desk
− Robot recognizes desk, marks coordinates
− Robot moves, seeking a chair
− Robot recognizes chair, marks coordinates
− Robot determines path from chair to desk
− Robot moves chair to desk, following the determined path
− Robot repeats procedure until all chairs are at a desk, or all desks

are full

Sequence Diagram

The Sequence Diagram is added in the attachment section at the end of
the document.

Class Diagram

11/6/2002 Project Design Document - Version 3.2 Page 45 of 78

Class Relations

Error to Date (0..1 to 1)

A single error can be logged on a single date. However, a date can
go by with no error. With time being the smallest attribute in the
Date class and the use of only one robot, each Date instance
becomes unique.

Error to Location (0..* to 1)

Many errors can occur at a single location. The date of the error
makes each occurrence unique. In addition, a certain instance of
Location may be associated with many errors.

Error to RandomObject (0..* to 0..1)

Many errors can occur at a single random object. But an error does
not have to involve a random object. It may be caused by some
other object.

Location to Desk (1 to 0..1)

Only a single desk can occupy a given space obviously, so why
does a Desk only occupy a single location? It is true that a Location
is only a point, so in all reality it occupies more than one location.
For our purposes, we will represent the space a Desk occupies as a
single Location. A location does not have to include a desk though.

Location to Chair (1 to 0..1)

A chair will be dealt with much the same way as a desk. Keeping
track of a single location of a point will allow us the simplicity of
having the robot return to where it found the exact same
coordinates it found the chair every time. But, as in the desk
scenario, a location does not have to include a chair.

Location to Wall (1 to 0..1)

A wall is at a single location, with a begin point and an end point.
We have this represented as two lines on the graph. All locations
do not correspond to a wall, so it can be a zero to one relationship.

11/6/2002 Project Design Document - Version 3.2 Page 46 of 78

4.3 Class and Object Design

Class Descriptions

Chair

The Chair class is a representation of the very objects we will be
placing in their proper locations at a Desk. The class consists of a
constructor, setColor, setLocation, getColor, and getLocation
methods as well as the int Color, Location XY, and bool Placed.

Chair Public Methods:

public Chair::Chair()

The constructor initializes an instance of Chair to Color(-1),
XY(-1,-1,-1), IsPlaced(false). XY must first instantiate an object
of type Location, using its constructor for initialization of this
object.

void Chair::setColor(int color)

The setColor method defines the color that will be used to
represent an instance of Chair. All Chair objects should have
their color attribute set to the same value since we will be using
a single color to describe objects of this type.

void Chair::setLocation(Location XY)

The setLocation method sets the Location object of the
corresponding instance of Chair. This method will be invoked if
the position of the chair changes from that when it was
encountered. An assumption we will make is that once a chair
is located and a location is stored, the chair will not be moved
by any other means than the robot grasping it for movement or
placement. This will save us from having to locate chairs
several times, saving a significant amount of time. It is also an
important note that we do not uniquely identify chairs by any
other attributes; however, location is one way to give a degree
of uniqueness since no two chairs can occupy the same
Location.

11/6/2002 Project Design Document - Version 3.2 Page 47 of 78

int Chair::getColor()

The getColor method returns the Color value of the
corresponding instance of Chair. This attribute will be used to
visually identify a Chair object.

void Chair::getLocation(Location &loc)

The getLocation method will pass a Chair Location back by
reference. Our committed deliverable is to locate and place a
single chair at a desk. This being the case, we will not
immediately employ a storage facility such as a queue, array, or
linked list as a container for Chair objects. However, if we
succeed in our committed relationship goals we may try to
locate and place all chairs. In this case, we will store Chair
objects into a queue, array, or linked list. With the latter
implementation, this method will play a more vital role than in
the case of our committed relationship goal.

Private Chair Attributes:

private int Color

Color is the RGB value of the sticker that we plan to assign to
Chair objects. Using the camera and the color recognition
subsystem of the robot, we can use color as a means of object
recognition. We will define this color as a common RGB integer
value for all Chair objects. Therefore, all Chair objects will have
the same value for this attribute.

private Location XY

The instance of Location class gives a (X,Y,Z) coordinate for
the Chair object in the room. It will be used to store the location
a Chair occupies in the room. Several classes depend upon
the Location class.

private bool Placed

This is a Boolean function to determine whether a Chair has
been placed at a desk. Initially when a chair is found it is set to
false. Once the chair is placed, it is set to true.

11/6/2002 Project Design Document - Version 3.2 Page 48 of 78

Desk

The Desk class is a representation of the objects in which instances
of Chair will be placed. The Desk class consists of a constructor,
setColor, setLocation, getColor, and getLocation methods. It also
has the int color, Location XY, and bool IsEmpty attributes.

Public Desk Methods:

public Desk::Desk()

The constructor initializes an instance of Desk to Color(-1),
Location XY(-1,-1,-1), and bool isEmpty(false). XY must first
instantiate an object of type Location, using its constructor for
initialization of this object.

public void Desk::setColor(int color)

The setColor method defines the color that will be used to
represent an instance of Desk. All Desk objects should have
their color attribute set to the same value since we will be using
a single color to describe objects of this type.

public void Desk::setLocation(Location XY)

Depending upon the implementation we get accomplished, this
procedure will be different. In the committed relationships, the
locations will be hard-coded, thus making this function obsolete.
In the casual relationship, the setLocation method sets a
Location object of the corresponding instance of Desk. We will
assume, for the most part, that instances of Desk are static
objects and will remain in the same location. This means we
could store the location of all Desk objects in accordance with
the room and never have to store them again. Therefore, we
could start the robot and assume the location of Desk objects
have remained constant.

public int Desk::getColor()

The getColor method returns the Color value of the
corresponding instance of Desk. This attribute will be used to
visually identify a Desk object.

11/6/2002 Project Design Document - Version 3.2 Page 49 of 78

public void Desk::getLocation(Location &Loc)

The getLocation method will pass a Desk Location back by
reference. Our committed deliverable is to locate and place a
single chair at a desk. This being the case, we will not
immediately employ a storage facility such as a queue, array, or
linked list as a container for Desk objects. However, if we
succeed in our committed relationship goals we may try to
locate and place all chairs. In this case, we will store Desk
objects into a queue, array, or linked list. With the latter
implementation, this method will play a more vital role than in
the case of our committed relationship goal.

Private Desk Attributes:

private int Color

Color is the RGB value of the sticker that we plan to assign to
Desk objects. Using the camera and the color recognition
subsystem of the robot, we can use color as a means of object
recognition. We will define this color as a common RGB integer
value for all Desk objects. Therefore, all Desk objects will have
the same value for this attribute.

private Location XY

The instance of Location class gives a (X,Y,Z) coordinate for
the Desk object in the room. It will be used to store the location
a Desk occupies in the room. Several classes depend upon the
Location class.

private bool isEmpty

This is a Boolean function to determine whether a Chair object
has been placed at an instance of Desk. Initially when a desk is
found it is set to true. Once the chair is placed, it is set to false.

Error

The Error class is a general structure for reporting and logging
errors that occur while the robot is running and trying to place chairs
in their rightful Locations. It consists of a constructor, setError, and

11/6/2002 Project Design Document - Version 3.2 Page 50 of 78

getError methods. Its attributes consist of int errorNumber, Date
errorDate, char picLocation[80], int errorDesc, and RandomObject*
randObjPtr.

Public Error Methods:

public Error::Error()

The constructor will initialize errorNumber(-1), Date
errorDate(-1, -1, -1,-1), and char picLocation(NULL). Class
member errorDate must first instantiate an object of type
Date, using its constructor for initialization of this object.

public void Error::setError(int errorNumber, Date
errorDate, char picLocation[80], int errorDesc,
RandomObject &ROP)

The setError function will set the error number, log the Date
the error occurred, attempt to log a picture of the situation,
give a descriptive error number for a pre-defined error
state, and assign a pointer to a RandomObject if one was
involved.

public void Error::getError(int &numberBuffer, Date
&dateBuffer, char &locationBuffer,int &descBuffer,
RandomObject *ROP)

The getError function returns by reference an errorNumber,
errorDate, picLocation, errorDesc, and pointer to a
RandomObject if one was involved.

Private Error Attributes:

private int errorNumber

This is the numerical value to describe the error. As
development continues we will define error numbers to the
many error states that may be encountered by the robot
during operation. Example, error 404 chair not found.

11/6/2002 Project Design Document - Version 3.2 Page 51 of 78

private Date errorDate

This is the date that the error occurred. The Date object is
defined in the Date class further in this document. This will
play a key role in helping differential one error from another
that may have occurred in a similar context.

private int errorDesc

If the error is one that has been acknowledged and
prepared for it will be assigned a description to help
remedy the problem.

private RandomObject* randObjPtr

If the error involves interaction with a random object, this
attribute will be set to an address of an object of
RandomObject type.

Wall

The Wall class is to aid us in mapping the room dynamically,
detecting objects such as the fold up panels, which may or may not
be in the robot's way each time it is operated. This class may or
may not need to be used.

Public Wall Methods:

public Wall::Wall

The wall constructor will initialize Location beginPoint(-1,-1,-1),
Location endPoint(-1,-1,-1), and float length(0).

public void Wall::setBeginPoint(Location beginPoint)

The setBeginPoint function is used to define the beginning of a
wall. The beginning being relative to whichever side of the wall
we define to be the beginning. An instance of class Location
will be representing the (X,Y,Z) coordinates of the beginning
point of the wall.

11/6/2002 Project Design Document - Version 3.2 Page 52 of 78

 public void Wall::setEndPoint(Location endPoint)

The setEndPoint function is used to define the end of a wall.
The end being relative to whichever side of the wall we define
as the last point. An instance of class Location will be
representing the (X,Y,Z) coordinates of the ending point of the
wall.

 public void Wall::setLength(float length)

The setLength function sets the length of the wall to the float
value passed as a parameter.

 public void Wall::getBeginPoint(Location &beginPoint)

The getBeginPoint function will pass a Wall beginPoint Location
object back by reference.

 public void Wall::getEndPoint(Location &endPoint)

The getEndPoint function will pass a Wall endPoint Location
object back by reference.

public void Wall::getLength(float &length)

The getLength pass back the total wall length by reference.
This will be the distance between the beginPoint and endpoint
of the wall.

Private Wall Attributes:

private Location beginPoint

Since walls are basically line segments (2 connected points)
this is one of the three attributes that are required. The first
point of a found wall will be considered the beginPoint. It uses
the Location class to describe both the beginPoint and endPoint

private Location endPoint

This is the sister point to the begin point. It has the same
features as beginPoint only it is considered to be the
termination point of the line, which denotes the end of a wall.

11/6/2002 Project Design Document - Version 3.2 Page 53 of 78

private float length

Length is the distance between the endPoint and beginPoint.
As of this writing, it remains to be determined if this value will be
measured or calculated. However, this could be the case for
any of the attributes that is if you know two of the three
attributes.

RandomObject

The RandomObject class is a representation of an object that the
robot cannot understand with its learned capabilities. This object is
neither a wall, desk, nor chair therefore is treated as a random
object.

Public RandomObject Methods:

public void RandomObject ::setDOC(Date DOC)

The setDOC method is used to store the DOC (date of
occurrence) a RandomObject was encountered. DOC is a
private member of the RandomObject class.

public void RandomObject ::setPicLoc(char picLoc[])

The setPicLoc method accepts a character string parameter.
This string is the fully qualified path name to the picture on the
backing store. An example follows:

/home/rafs/RandomObject/randObj001.jpg

public void RandomObject ::getDOC(Date &DOC)

The getDOC method is used to retrieve the DOC (date of
occurrence) a RandomObject was encountered.

public void RandomObject ::getPicLoc(char &picLoc)

The getPicLoc method passes a character string back by
reference. This string is the fully qualified path name to the
picture on the backing store. An example follows:

/home/rafs/RandomObject/randObj001.jpg

11/6/2002 Project Design Document - Version 3.2 Page 54 of 78

Private RandomObject Attributes:

private Date dateOfEncounter

The dateOfEncounter is the date the robot encountered a
RandomObject. The Date class is described later in this
document.

private char picLocation[80]

When an encounter occurs with a Random object that cause an
error, a picture will be taken and stored at a specific path, such
as "/home/rafs/RandomObject/randObj001.jpg”. This string is
the fully qualified path name to the picture on the backing store.

Location

The Location class is for describing an object's location somewhere
in room 2029. It uses standard Cartesian coordinate system using
floating-point numbers.

Public Location Methods:

public void setXYZ(float x, float y, float z)

The setXYZ method is used to set the (X,Y,Z) coordinates of a
Location class object. The X,Y,Z values being float type private
members of the Location class.

public void getXYZ(float &x, float &y, float &z)

The getXYZ method is used to retrieve the (X,Y,Z) coordinates
of a Location class object. The X, Y, Z values being float type
private members of the Location class.

Private Location Attributes:

private float xPt

This is the x coordinate of the location of a point somewhere in
the room.

11/6/2002 Project Design Document - Version 3.2 Page 55 of 78

private float yPt

This is the y coordinate of the location of a point somewhere in
the room.

private float zPt

This is the z coordinate of the location of a point somewhere in
the room. This last attribute won't always be used in mapping
the location of objects in the room but may be helpful for future
use, especially if robots purchased in the future contain the
ActivMedia Arm facility.

Date

This class is used for logging dates for events that occur.

Public Date Methods:

public void Date::setMonth(int month)

The setMonth method will set the Date class’s private integer
value Month attribute.

public void Date::setDay(int day)

The setDay method will set the day member of the invoking
Date class object.

public void Date::setYear(int year)

The setYear method will set the year member of the invoking
Date class object.

public void Date::getMonth(int month)

The getMonth method will pass back by reference the Date
object’s private member month.

public void Date::getDay(int day)

The getDay method will pass back by reference the Date
object’s private member day.

11/6/2002 Project Design Document - Version 3.2 Page 56 of 78

public void Date::getyear(int year)

The getYear method will pass back by reference the Date
object’s private member year.

public void Date::setTime(int time)

The setTime method is used to timestamp when an error, desk,
chair, or RandomObject was encountered. The private time
member is set to the passed parameter.

public void Date::getTime(int time)

The getTime method is used to retrieve a timestamp of an error,
desk, chair, or RandomObject. This aids in adding a certain
degree of uniqueness to each error.

Private Date Attributes:

private int month

The month of the year represented as an integer 1-12.

private int day

The day of the week the event occurs on represented 1-7.

private int year

The year the event occurs 0000-????.

private int time

The time attribute represents a timestamp value. This indicates
when a desk, chair, RandomObject, or an error was encountered.

Classes for the Robot Aided Feng Shui Project

// About these classes: These are the base classes for the
// implementation of some of the classes we intend to use for our
// senior project. These classes all have to do with the
// operation of ActivMedia robots and things they will encounter.
// A brief description of each class and its attributes and functions
// is described before the listing of each class.

11/6/2002 Project Design Document - Version 3.2 Page 57 of 78

// class: Chair
// description: The Chair class is a class of the very objects we will
// be moving back to their proper location at a desk. Chairs have
// several attributes as defined below
// attributes:
// color - Color is the color of the label that we plan to put on the
// Chair. Using the camera facility of the robot and the color
// recognition of the API we can use colors as a tool for object
// recognition.
// XY - The location class gives an (x,y,z) coordinate of the Chair
// in the room. The Location class is used by several classes. XY is
// the beginning point from where a Chair starts
// placed - This is a boolean function to determine whether or not a Chair
// has been placed at a desk. Initially when a chair is found it is
// set to false. Once the chair is placed, it is set to true.

class Chair
{
public:
 Chair(); //constructor
 void setColor(int color); //input
 void setLocation(Location XY); //input
 int getColor(); //output
 void getLocation(Location &loc); //output
private:
 int color; //doesn't matter what the color is, just as
 //long as it contrasts with the color of the Desk
 Location XY; //location of the chair within the room
 bool placed; //is the chair at the desk or not
};
//end of class Chair

// class: Desk
// description: The Desk class is a class of the objects where we will
// be moving back Chairs to their proper location. Desks have several
// attributes as defined below
// attributes:
// color - color is the color of the label that we plan to put on the
// Desk. Using the camera facility of the robot and the color
// recognition of the API we can use colors as a tool for object
// recognition.
// XY - The location class gives an (x,y,z) coordinate of the Desk
// in the room. The Location class is used by several classes. The
// Location is the finish or end point from where a Chair starts.
// is Empty - This is a boolean function to determine whether or not a

11/6/2002 Project Design Document - Version 3.2 Page 58 of 78

// chair has been placed at a desk. Initially when a Desk is found it is
// set to true. Once the chair is placed, it is set to false.

class Desk
{
public:
 Desk(); //constructor
 void setColor(int color); //input
 void setLocation(Location XY); //input
 int getColor(); //output
 void getLocation(Location &Loc); //output
private:
 int color; //doesn't matter what the color is, just as
 //long as it contrasts with the color of the Chair
 Location XY; //location of the desk within the room
 bool isEmpty; //is there a chair at the desk?
};
//end of class Desk

// class: Error
// description: The Error class is a general structure for reporting and
// logging errors that occur while the robot is running and trying to
// put Chairs back in their rightful Locations. Errors have several
// attributes as defined below.
// attributes:
// errorNumber - This is a number to log the error. For example, if
// the error to be logged is the 25th error in operation, this
// value will be set to 25.
// errorDate - This is the date that the error occurred. the Date object
// is defined in the Date class further in this document.
// picLocatoin - When an error occurs, the camera will take a picture of
// the error condition and store it in a folder. This attribute will
// store the location of the path where the file is located.
// i.e. //csfs2.siue.edu/sp/s02g2/picLog/pic25.jpg
// errorDesc - If the error is recognizable, it will be assigned a
// predetermined error number.
// randObjPtr - if the error involves interaction with a random object,
// this attribute will set a pointer to an object of the RandomObject
// type.

class Error
{
public:
 Error(); //constructor
 void setError(int errorNumber, //the sequential number of the error
 Date errorDate, //the date of the error

11/6/2002 Project Design Document - Version 3.2 Page 59 of 78

 char picLoation[80], //the location of the picture of the
//error

 int errorDesc, //an error descriptor, i.e. error 123
 RandomObject &ROP); //pointer to a RandomObject

 void getError(int &numberBuffer,//the sequential number of the error
 Date &dateBuffer, //the date of the error
 char &locationBuffer, //the location of the picture of the

//error
 int &descBuffer, //an error descriptor, i.e. error 123
 RandomObject *ROP); //pointer to a RandomObject
private:
 int errorNumber; //number to log the error
 Date errorDate; //their may exist predefined date class

//for C++
 char picLocation[80]; //location of the picture of
 //the error condition

//e.g., /"usr/local/bin/errors/"
 int errorDesc; //description of the error
 RandomObject* randObjPtr;
//if the error involves encounters with a random
//object, this pointer will point to that RandomObject.
};
//end of class Error

// class: Wall
// description: The Wall class is to help us with mapping the room
// dynamically
// with object such as the fold up screens that may or may not be in the
// robot’s way every time it is operated. This class may or may not need
// to be used.
// The attributes of the Wall class are described below.
// attributes:
// beginPoint - since walls are basically line segments (2 connected
// points) this is one of the three attributes that it needs. The first point
// of a found wall will be considered the beginPoint. It uses the
// location class to describe the point.
// endPoint - This is the point that is the sister point to the begin point. It
// has the same features as beginPoint only it is considered to be the
// termination point of the line.
// length - Length is the distance between the endPoint and beginPoint.
// As of this writing, it remains to be determined if this value will be
// measured or calculated. However, this could be said of any of the
// three attributes as if you have two of the three attributes.

11/6/2002 Project Design Document - Version 3.2 Page 60 of 78

class Wall
{
public:
 Wall();
 void setBeginPoint(Location beginPoint); //input
 void setEndPoint(Location endPoint); //input
 void setLength(float length); //input
 void getBeginPoint(Location &beginPoint); //output
 void getEndPoint(Location &endPoint); //output
 void getLength(float &length); //output
private:
 Location beginPoint; //begin point
 Location endPoint; //end point
 float length; //distance between those two points
};
//end of class Wall

// class: RandomObject
// description: The RandomObject class is a class for objects that are
// encountered that cause the robot errors. The attributes are described
// below.
// dateOfEncounter - The Date of the encounter with the RandomObject.
// The Date type is described elsewhere in this document.
// picLocation - When an encounter occurs with a Random object that
// cause an error, a picture will be taken and stored at a specific path
// such as "C:\Windows\Temp\RandObj.jpg". This attribute is a
// character string for that path.

class RandomObject
{
public:
 void setDOC(Date DOC); //set the date of the encounter with

//the object
 void setPicLoc(char picLoc[]); //take a picture and the location is the

//path to it
 void getDOC(Date &DOC); //get the date of the encounter with

//the object
 void getPicLoc(char &picLoc); //take a picture and the location is the

//path to it
private:
 Date dateOfEncounter; //date of encounter with the random

//object
 char picLocation[80]; //location of the picture of the error

//condition
//e.g., /"usr/local/bin/randObj/"

};//end of class RandomObject

11/6/2002 Project Design Document - Version 3.2 Page 61 of 78

// class: Location
// description: The Location class is for describing an object's location
// somewhere in the room. It uses standard Cartesian coordinate
// system using floating point numbers (not integers). The attributes for
// the Location class are described below.
// attributes:
// xPt - this is the x coordinate of the location of a point somewhere in
// the room.
// yPt - this is the y coordinate of the location of a point somewhere in
// the room.
// zPt - this is the z coordinate of the location of a point somewhere in
// the room. This last attribute really won't be used in mapping the
// location of things in the room but may be helpful for future use.

class Location
{
public:
 void setXYZ(float x, float y, float z); //set the points
 void getXYZ(float &x, float &y, float &z); //get the points
private:
 float xPt; //x coordinate
 float yPt; //y coordinate
 float zPt; //z coordinate, not really used
};
//end of class Location

// class: Date
// description: This class is used for logging dates for events that occur.
// The attributes for the class are listed below.
// attributes:
// month - the month of the year represented as an integer 1-12.
// day - the day of the week the event occurs on represented 1-7.
// year - the year the event occurred.
// time – the time the event occurred.

class Date
{
public:
 void setMonth(int Month); //input
 void setDay(int Day); //input
 void setYear(int Year); //input
 void setTime(int Time); //input

 void getMonth(int &Month); //output
 void getDay(int &Day); //output

11/6/2002 Project Design Document - Version 3.2 Page 62 of 78

 void getyear(int &Year); //output
 void getTime(int &Time); //output

private:
 int month; //the month of the year
 int day; //the day of the month
 int year; //the year that date occurs
 int time; //the time of the date.
};
//end class Date

4.4 Networking and Database Information

Network Information

The ActivMedia Robot will be controlled over the SIUE School Of
Engineering Windows NT network (which from here on out will be
referred to as SOENT) via a TCP/IP socket connection using a wireless
Ethernet adapter made by Lucent Technologies. This
hardware/software combination allows us to connect to the robot via any
of the PC’s in the Engineering Building. However there is one limitation.
The Ethernet adapter has two ends to it: one for the robot and one that
plugs into the standard network cabling via the network jacks spread
throughout the building. The robot must be sufficiently close to the other
wireless adapter to promote reliable communication and fewer network
errors. The team has found that this is an obstacle that can be
overcome by moving the second wireless adapter to whatever room the
robot is operating in.

It has become one of our long-term goals to make the Robot Aided Feng
Shui software accessible via the World Wide Web. This seems
achievable since the World Wide Web is just a “giant” IP network, similar
to the SOENT network that the robot currently runs on. Part of our long-
term goals for this involves using a web browser to “drive” the robot from
a remote (off campus) location.

Database Information

As the design of this project currently stands, there is not a database
implementation. However, for future growth, we have planned to use a
database for logging and keeping track of errors and error statistics.
The type of database we will use is the relational style database. This
style of database has multiple tables with related entries. The database

11/6/2002 Project Design Document - Version 3.2 Page 63 of 78

we would like to use would most likely be an SQL compatible database
that is also easily compatible with UNIX/Linux systems. This leads us to
believe that an ORACLE database written in the C or C++ programming
language would be most helpful to us and most likely to stay with the
current trend of ORACLE and SQL being leaders in database
technology. We reserve the right to change our future implementations
of the database based upon current technology, costs, and the
experience of the team members.

4.5 Lifecycle Model

This diagram represents the approach we will be taking to module
development with regards to chair objects. We will first attempt to locate
chairs via a highly concentrated amount of colored stickers being placed
at strategic positions on the chair. Successive attempts will involve
fewer colored stickers eventually eliminating the use of color all together.

11/6/2002 Project Design Document - Version 3.2 Page 64 of 78

This diagram represents the approach we will be taking to module
development with regards to desk objects. We will first hard code the
position of the desks. Successive attempts will involve a few colored
stickers, eventually eliminating the use of color all together.

11/6/2002 Project Design Document - Version 3.2 Page 65 of 78

This diagram represents the approach we will be taking to module
development with regards to robot movement without a chair. Initially
we will take advantage of the robot’s built-in object avoidance features.
As time permits, we would like to engineer further, more sophisticated
techniques, to avoid collisions with static objects. Finally, we would
attempt to avoid collisions with all sorts of dynamic objects that may
occur in EB2029.

11/6/2002 Project Design Document - Version 3.2 Page 66 of 78

This diagram represents the approach we will be taking to module
development with regards to robot movement while holding a chair. Our
first attempt will utilize a predetermined path that will be clear of
obstructions and navigated in the forward (pushing) direction only.
Following efforts will have the robot operate in both a forward (pushing)
and backward (pulling) fashion. Final attempts would be concentrated
on creating unique paths using sophisticated object avoidance
techniques. This could involve creating the path while moving a chair,
rather than beforehand.

Design Conclusions

Our design model, design to schedule, lends itself quite nicely to our
project in particular. Our minimal requirements are to locate and place a
single chair at an empty desk.

11/6/2002 Project Design Document - Version 3.2 Page 67 of 78

Our initial development will be geared toward locating a chair using
several colored stickers with subsequent phases reducing the use of
color until chair recognition is solely based on its physical
characteristics. Given our time constraints and learning curve, we
realize that it is highly likely that we would not be able to implement all
phases in the allotted time. However, our design takes this into account
leaving refinement as less of a priority than finishing the minimal client
requirements.

All other software concepts take much the same approach as dealing
with recognition of a chair; refinements are something to strive for, but
not essential, to successful completion of our project.

Our design will leave us with a fully deliverable software package with at
least the minimal client requirements by our December 2002 deadline.
As time permits, subsequent phases of refinement on software concepts
will be implemented in order to deliver the most robust piece of software
possible.

4.6 Test Plan

A significant amount of testing will be done to each software modules
that is constructed for our project. This module breakdown is attached
at the end of this document and shows our current organization plan.
Each module will be tested individually using stub data if needed to
ensure it behaves as intended.

The Pioneer simulator provided with Saphira 8.1 adds a valuable tool to
our testing process. The simulator is capable of emulating each sensory
device providing stub data that would be expected from each sensory
subsystem. This being the case, software modules will be testable
without the robot being available. This provides us with an extremely
flexible environment in which we can ensure the correctness of our code
modules.

Per Module Testing

Movement

Two types of tests will be conducted on the movement
subsystem, both with and without a chair.

11/6/2002 Project Design Document - Version 3.2 Page 68 of 78

Without Chair

This module will be expected to handle the basic
movement of the robot in the EB2029 environment. The
test could be conducted using the mapping features of the
Pioneer simulator or in the live physical environment. Live
testing would produce more meaningful results since
dynamic objects may be present, therefore testing the
robustness of our movement handling. Using the mapping
features of the simulator would test the handling of static
objects and room navigation in general. Overall, both
testing methods would provide us with a good idea of how
well we are handling the basic navigation aspects of
EB2029.

With Chair

This module will be expected to handle the basic
movement of the robot in the EB2029 environment while
navigating with a chair. This test will not be able to be
conducted via the simulator because of the lack of
functions emulating an object being held. As our research
continues we may find a way to emulate this state of
movement. To ensure appropriate behavior, a greater
effort will be exerted in testing this module in the live
physical environment of EB2029, rather than attempting to
emulate this via the simulator.

Object Recognition

Key elements of object recognition will require aggressive
testing to ensure a collision will not occur during the ordinary
operation cycle.

Color Training

The robot will be able to distinguish object from each other
via color training. This software module can be tested on
series of sample photos taken from the robot’s mounted
camera. This testing can be done without the need of the
robot, therefore making it possible to test on an ordinary
PC.

11/6/2002 Project Design Document - Version 3.2 Page 69 of 78

Laser/Sonar

These subsystems may come into use as our obstacle
avoidance algorithms mature. The Pioneer simulator is
able to emulate these devices - feeding stub data that
would be expected from a certain environment. To ensure
the accuracy of our tests, they will also be carried out with
the robot in the live EB 2029 environment.

 Camera

This will be the primary tool for recognizing empty desks
and chairs. The camera will be able to recognize a certain
color as being an empty desk or a chair. We will recognize
any other object as being a type defined as “other.”
Basically, we will simply ignore anything that is not an
empty desk or a chair.

Chair Handling

The primary module for Chair Handling will be Moving with a
chair. That will take care of any collision detection, along with
knowing when a chair is at a desk. Chair Handling will also
have to deal with gripping a chair, which will be the first thing
we will test in this module. From that point, we will combine the
gripping a chair with the already-written module, Moving with a
chair.

11/6/2002 Project Design Document - Version 3.2 Page 70 of 78

4.7 Project Prototype

Class Description

In order to complete our project prototype, our group had to work in an
expedient fashion, quickly learning the new tools and environments used
in our project. As a result of a hardware malfunction on the robots, we
had significantly less time to develop our prototype code than expected.
The Pioneer2 robot allocated for our senior project has been mailed
back to ActivMedia and is pending service from their expert staff.

An attempt was made to complete this prototype despite the problems
with the equipment, and significant progress was made. As it stands
now, our prototype enables the robot to complete a 6-foot square in both
a clockwise and counterclockwise direction. The robot maintains the
grip of the chair through the entire process. However, it does not detect
the loss of grip on the chair. The following breakdown of classes
involved in our prototype will highlight their features and contribution to
the entire prototype.

• SfRafsGripperOpenAction

This simple class allows us to invoke this action manually from the
Saphira interaction window or call this function from a Colbert script.
Its sole purpose is to open the gripper to the widest possible state
preparing it for gripping a chair.

6x6 Traversal Region

36 sq. ft.

8'-0"

11/6/2002 Project Design Document - Version 3.2 Page 71 of 78

• SfRafsGripperCloseAction

This simple class allows us to invoke this action manually from the
Saphira interaction window or call this function from a Colbert script.
Its sole purpose is to close the gripper to the narrowest possible
state therefore gripping a properly positioned chair.

• SfRafsGripperRaiseLowerAction

This class allows us to either raise or lower the position of the
gripper. This action is necessary to ensure us the best position for
gripping a chair. The parameters to the invoking function define
whether the gripper is moving up or down and for what duration it
should move. We would have liked to have been able to specify an
exact position, however the only metric of movement is duration.
Our static values for this function are 0 to move down and 1 to move
up. To position the gripper at the appropriate height we lowered the
gripper to the lowest possible position,
RafsGripperRaiseLower(0,0). Then we would raise the gripper
upwards for 135 milliseconds. RafsGripperRaiseLower(1,135)

• SfRafsSquareClockWiseAction
SfRafsSquareCounterClockWiseAction

This class is the main code to our (counter)clockwise square
movement action. The parameter to the invoking function accepts
an integer which defines the length of one side of the total square
wishing to be traversed. This parameter is to be sent in millimeters.
Therefore the value 1829 was sent to achieve a 6 foot square
traversal.

Code Structure

Our source code was based of a simple example that came packaged
with the Saphira 8.1 API. We utilized this example because it contained
example code for controlling robot movement and defining actions for
use in Colbert within the Saphira GUI interaction window. There are
some vital functions that define the fashion in which this library is loaded
and accessed.

The class method fire is the main loop, so to speak. This method is
executed continuously until it returns a null value. As long as a valid
reference to a desired action is returned, this function will continue
looping.

11/6/2002 Project Design Document - Version 3.2 Page 72 of 78

The class methods invoke and sfLoadInit define the interfaces to the
Colbert scripting language. These functions enable us to call the
functions manually via the Saphira GUI interaction window or via a
Colbert script.

The remaining class methods have sufficient in-line comments to clarify
their purpose and usage.

Proof of Concept

In order to provide proof that our prototype works as suggested, we
contemplated several ways to present our prototype to the customer.
Since the robot is unavailable for a formal presentation, we decided to
rely on the Pioneer2 simulator and a videotaped session of the prototype
taken when the robot was still available. While it is difficult to rely on the
simulator for all testing, we hope it will be sufficient for this part of the
project.

Example Code

An example program from our prototype, following the procedure in the
Programming Standard section is provided below. The example used is
a module from our prototype that gets the robot to move in a user-
defined square. It works (for the prototype) with a couple other modules
that move the gripper. The SfRafsSquareCounterClockWise is as
follows:

// RAFS - Robot Aided FengShui
// Souther Illinois University at Edwardsville
// Department of Computer Science

// file: rafsSquareClockWise.cpp
// author: Peter Motykowski

#include "Saphira.h"

#include <export.h>
#include <math.h>

// class: SfRafsSquareClockWiseAction

// description: Defines a Colbert action which has the robot traverse a n-sized
// square. This class takes one parameter, the size of one side of
// square in millimeters.

11/6/2002 Project Design Document - Version 3.2 Page 73 of 78

// attributes:
// Desired - This class member is not used in this class, however
// it is left to provide the necessary parameters to *fire().

// Distance - This class member defines the size of sides of the square.

// Gone - This class member keeps track of how far has been traveled.

// Direction - This class member keeps track of the direction the robot will
// be heading next.

// ax,ay - These class members are used to keep track of the robots current
// position.

// ExitProgram-This class member is used to determine when the program should exit.

class SfRafsSquareClockWiseAction : public ArAction
{
public:

 SFEXPORT SfRafsSquareClockWiseAction(
 int distance
);

 virtual ~SfRafsSquareClockWiseAction() {};

 SFEXPORT virtual ArActionDesired *fire(
 ArActionDesired currentDesired
);

 SFEXPORT void reset() {
 Gone = 0;

 ax = SfROBOT->getX();

 ay = SfROBOT->getY();
 }

 static SfRafsSquareClockWiseAction *invoke(
 int distance
); // interface to Colbert

protected:

 ArActionDesired Desired;

 int Distance; // parameters to the action

 int Gone; // how far we've gone

11/6/2002 Project Design Document - Version 3.2 Page 74 of 78

 int Direction;

 double ax;
 double ay; // old robot position

 bool ExitProgram;
};

// function name: SfRafsSquareCounterClockWiseAction
// parameters-in: distance - length of one side of the square
// parameters-out: none
// parameters-in/out: none
// returns: void
// description of function: initializes all the variables needed later in the class
// notes: constructor

SFEXPORT
SfRafsSquareClockWiseAction::SfRafsSquareClockWiseAction(int distance)
: ArAction("RafsSquareClockWise")
{
 Distance = distance;

 Direction = 360;

 reset();

 ExitProgram = 0;
}

// function name: fire
// parameters-in: d - a pointer of type ArActionDesired
// parameters-out: none
// parameters-in/out: none
// returns: returns an ArActionDesired pointer, containing what the
// action wants to do
// description of function: This is the main part of the program. This function
// runs the distance initiated in the constructor, then turns left, and runs the
// distance again, continuing the process until a square is traversed.
// notes: none

SFEXPORT ArActionDesired *
SfRafsSquareClockWiseAction::fire(ArActionDesired d)
{
 Desired.reset(); // reset the actionDesired (must be done)

 double dx = ax - SfROBOT->getX();
 // check the distance to be traveled
 double dy = ay - SfROBOT->getY();

 ax = SfROBOT->getX();

11/6/2002 Project Design Document - Version 3.2 Page 75 of 78

 //set new values
 ay = SfROBOT->getY();

 int ds = (int)sqrt(dx*dx + dy*dy);

 Gone += (int)ds;

 //sfMessage("Running RafsSquareClockWise, gone %d", myGone);

 if (ExitProgram)
 {
 sfMessage("Shutting Down!");

 deactivate();

 return NULL;
 }

 if (Gone >= Distance)
 {
 if(Direction > 0)
 Direction -= 90;

 else
 {
 ExitProgram = 1;

 Desired.setVel(0);

 sfMessage("Finishing RafsSquareClockWise");

 return &Desired;
 }

 sfMessage("Running RafsSquareClockWise, direction %d", Direction);

 Desired.setHeading(Direction);

 sfMessage("Turn Right");

 Gone = 0;
 }

 else
 Desired.setVel(200); // moderate speed

 ExitProgram = 0;

 return &Desired; // return the desired controls
}

11/6/2002 Project Design Document - Version 3.2 Page 76 of 78

// function name: invoke
// parameters-in: distance - length of one side of the square
// parameters-out: none
// parameters-in/out: none
// returns: returns a new SfRafsSquareCounterClockWiseAction object
// description of function: This static function returns a behavioral action object,
// with arguments that can be set from Colbert
// notes: interface to Colbert

SfRafsSquareClockWiseAction *
SfRafsSquareClockWiseAction::invoke(int distance)
{
 return new SfRafsSquareClockWiseAction(distance);
}

// function name: sfLoadInit
// parameters-in: none
// parameters-out: none
// parameters-in/out: none
// returns: void
// description of function: Defines the interface to Colbert
// notes: none

SFEXPORT void // define interface to Colbert
sfLoadInit ()
{
 sfAddEvalAction("RafsSquareClockWise",
 (void *)SfRafsSquareClockWiseAction::invoke, 1, sfINT);
}

syntax highlighted by Code2HTML, v. 0.8.11

11/6/2002 Project Design Document - Version 3.2 Page 77 of 78

5. Attachments

Attachments are on the next few pages, in the following order, with one
diagram on a page:

• Module Diagram
• State Diagram
• Sequence Diagram

11/6/2002 Project Design Document - Version 3.2 Page 78 of 78

Note: The actual attachments are located in modules.gif, NewStateChart.gif,
and sequence.gif, respectively.

